药学学报, 2013, 48(10): 1532-1543
引用本文:
刘洋, 蒋晨. 纳米药物递释系统的脑靶向研究进展[J]. 药学学报, 2013, 48(10): 1532-1543.
LIU Yang, JIANG Chen. Research advances in brain-targeted nanoscale drug delivery system[J]. Acta Pharmaceutica Sinica, 2013, 48(10): 1532-1543.

纳米药物递释系统的脑靶向研究进展
刘洋, 蒋晨
复旦大学药学院智能化递药教育部重点实验室, 上海 201203
摘要:
血脑屏障在发挥中枢神经系统保护作用的同时也阻碍了诊断和治疗药物向脑部的递送。随着纳米技术的发展, 纳米药物载体系统的应用使药物的跨血脑屏障转运和脑内递释成为可能。脑靶向药物递释系统由两个基本部分组成: 药物的递释载体系统和脑靶向策略。本文将主要介绍几种用于脑靶向药物递释的载体, 重点介绍实现药物脑靶向递送的几种脑靶向策略, 并对其各自的特点进行评价。
关键词:    靶向药物      纳米药物      血脑屏障      脑部疾病     
Research advances in brain-targeted nanoscale drug delivery system
LIU Yang, JIANG Chen
Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Shanghai 201203, China
Abstract:
The blood-brain barrier (BBB) exerts its central nervous system (CNS) protective function as it hinders the delivery of diagnostic and therapeutic agents to the brain. With the development of nanotechnology during the last thirty years, the nanocarriers for delivering drugs make it possible to transport drugs across the BBB. The brain-targeted drug delivery system usually consists of two parts: nanocarriers and brain-targeted strategies. In this review, several kinds of nanocarriers are introduced for brain-targeted drug delivery. We focus on several possible strategies for brain-targeting and comment on their advantages and disadvantages in application.
Key words:    drug targeting    nanomedicine    blood-brain barrier    brain disease   
收稿日期: 2013-04-09
通讯作者: 蒋晨,Tel:86-21-51980080,Fax:86-21-51980079,E-mail:jiangchen@shmu.edu.cn
Email: jiangchen@shmu.edu.cn
相关功能
PDF(5913KB) Free
打印本文
0
作者相关文章
刘洋  在本刊中的所有文章
蒋晨  在本刊中的所有文章

参考文献:
[1] Pardridge WM. Drug targeting to the brain [J]. Pharm Res, 2007, 24: 1733-1744.
[2] Silva GA. Nanotechnology approaches for drug and small molecule delivery across the blood brain barrier [J]. Surg Neurol, 2007, 67: 113-116.
[3] Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics [J]. Adv Drug Deliv Rev, 2012, 64: 686-700.
[4] Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: a promising system in novel drug delivery [J]. Chem Pharm Bull, 2010, 58: 1423-1430.
[5] Wang JJ, Zeng ZW, Xiao RZ, et al. Recent advances of chitosan nanoparticles as drug carriers [J]. Int J Nanomed, 2011, 6: 765-774.
[6] Trapani A, De Giglio E, Cafagna D, et al. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery [J]. Int J Pharm, 2011, 419: 296-307.
[7] Yemisci M, Gursoy-Ozdemir Y, Caban S, et al. Transport of a caspase inhibitor across the blood-brain barrier by chitosan nanoparticles [J]. Method Enzymol, 2012, 508: 253-269.
[8] Malhotra M, Tomaro-Duchesneau C, Prakash S. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases [J]. Biomaterials, 2013, 34: 1270-1280.
[9] Malmo J, Sandvig A, Varum KM, et al. Nanoparticle mediated P-glycoprotein silencing for improved drug delivery across the blood-brain barrier: a siRNA-chitosan approach [J]. PLoS One, 2013, 8: e54182.
[10] Xia H, Gao X, Gu G, et al. Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery [J]. Int J Pharm, 2012, 436: 840-850.
[11] Md S, Ali M, Baboota S, et al. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting [J]. Drug Dev Ind Pharm, 2013, in press.
[12] Zhou YZ, Alany RG, Chuang V, et al. Optimization of PLGA nanoparticles formulation containing L-DOPA by applying the central composite design [J]. Drug Dev Ind Pharm, 2013, 39: 321-330.
[13] Simsek S, Eroglu H, Kurum B, et al. Brain targeting of atorvastatin loaded amphiphilic PLGA-b-PEG nanoparticles [J]. J Microencapsul, 2013, 30: 10-20.
[14] Koffie RM, Farrar CT, Saidi LJ, et al. Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging [J]. Proc Natl Acad Sci USA, 2011, 108: 18837-18842.
[15] Lin Y, Pan Y, Shi Y, et al. Delivery of large molecules via poly(butyl cyanoacrylate) nanoparticles into the injured rat brain [J]. Nanotechnology, 2012, 23: 165101.
[16] Wohlfart S, Khalansky AS, Gelperina S, et al. Kinetics of transport of doxorubicin bound to nanoparticles across the blood-brain barrier [J]. J Control Release, 2011, 154: 103-107.
[17] Hassani Z, Francois JC, Alfama G, et al. A hybrid CMV-H1 construct improves efficiency of PEI-delivered shRNA in the mouse brain [J]. Nucl Acid Res, 2007, 35: e65.
[18] Hwang do W, Son S, Jang J, et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA [J]. Biomaterials, 2011, 32: 4968-4975.
[19] Teow HM, Zhou Z, Najlah M, et al. Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarrier [J]. Int J Pharm, 2013, 441: 701-711.
[20] Yan H, Wang L, Wang J, et al. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier [J]. ACS Nano, 2012, 6: 410-420.
[21] Venishetty VK, Komuravelli R, Kuncha M, et al. Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles [J]. Nanomedicine, 2013, 9: 111-121.
[22] Montenegro L, Trapani A, Latrofa A, et al. In vitro evaluation on a model of blood brain barrier of idebenone-loaded solid lipid nanoparticles [J]. J Nanosci Nanotechnol, 2012, 12: 330-337.
[23] Madan J, Pandey RS, Jain V, et al. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells [J]. Nanomedicine, 2013, 9: 492-503.
[24] Jin J, Bae KH, Yang H, et al. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles [J]. Bioconjug Chem, 2011, 22: 2568-2572.
[25] Lai F, Fadda AM, Sinico C. Liposomes for brain delivery [J]. Expert Opin Drug Deliv, 2013, in press.
[26] Tanifum EA, Dasgupta I, Srivastava M, et al. Intravenous delivery of targeted liposomes to amyloid-beta pathology in APP/PSEN1 transgenic mice [J]. PLoS One, 2012, 7: e48515.
[27] Caraglia M, Luongo L, Salzano G, et al. Stealth liposomes encapsulating zoledronic acid: a new opportunity to treat neuropathic pain [J]. Mol Pharm, 2013, 10: 1111-1118.
[28] Ishii T, Asai T, Oyama D, et al. Treatment of cerebral ischemia-reperfusion injury with PEGylated liposomes encapsulating FK506 [J]. FASEB J, 2013, 27: 1362-1370.
[29] Gaillard PJ, Appeldoorn CC, Rip J, et al. Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation [J]. J Control Release, 2012, 164: 364-369.
[30] Sharma G, Modgil A, Layek B, et al. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: biodistribution and transfection [J]. J Control Release, 2013, 167: 1-10.
[31] Huang FY, Chen WJ, Lee WY, et al. In vitro and in vivo evaluation of lactoferrin-conjugated liposomes as a novel carrier to improve the brain delivery [J]. Int J Mol Sci, 2013, 14: 2862-2874.
[32] Zhang P, Hu L, Yin Q, et al. Transferrin-conjugated polyphosphoester hybrid micelle loading paclitaxel for brain-targeting delivery: synthesis, preparation and in vivo evaluation [J]. J Control Release, 2012, 159: 429-434.
[33] Wang Y, Wang C, Gong C, et al. Polysorbate 80 coated poly (varepsilon-caprolactone)-poly(ethylene glycol)-poly(varepsilon-caprolactone) micelles for paclitaxel delivery [J]. Int J Pharm, 2012, 434: 1-8.
[34] Xie YT, Du YZ, Yuan H, et al. Brain-targeting study of stearic acid-grafted chitosan micelle drug-delivery system [J]. Int J Nanomed, 2012, 7: 3235-3244.
[35] Qian Y, Zha Y, Feng B, et al. PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery [J]. Biomaterials, 2013, 34: 2117-2129.
[36] Mu C, Dave N, Hu J, et al. Solubilization of flurbiprofen into aptamer-modified PEG-PLA micelles for targeted delivery to brain-derived endothelial cells in vitro [J]. J Microencapsul, 2013,in press.
[37] Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells [J]. Proc Natl Acad Sci USA, 1994, 91: 664-668.
[38] Qin Y, Chen H, Zhang Q, et al. Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals [J]. Int J Pharm, 2011, 420: 304-312.
[39] Kanazawa T, Taki H, Tanaka K, et al. Cell-penetrating peptide-modified block copolymer micelles promote direct brain delivery via intranasal administration [J]. Pharm Res, 2011, 28: 2130-2139.
[40] Borgmann K, Rao KS, Labhasetwar V, et al. Efficacy of Tat-conjugated ritonavir-loaded nanoparticles in reducing HIV-1 replication in monocyte-derived macrophages and cytocompatibility with macrophages and human neurons [J]. AIDS Res Hum Retroviruses, 2011, 27: 853-862.
[41] Wang H, Su W, Wang S, et al. Smart multifunctional core-shell nanospheres with drug and gene co-loaded for enhancing the therapeutic effect in a rat intracranial tumor model [J]. Nanoscale, 2012, 4: 6501-6508.
[42] Simon MJ, Kang WH, Gao S, et al. Increased delivery of TAT across an endothelial monolayer following ischemic injury [J]. Neurosci Lett, 2010, 486: 1-4.
[43] Veiseh O, Kievit FM, Mok H, et al. Cell transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery [J]. Biomaterials, 2011, 32: 5717-5725.
[44] Xia H, Gao X, Gu G, et al. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration [J]. Biomaterials, 2011, 32: 9888-9898.
[45] Pardridge WM, Kang YS, Buciak JL, et al. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate [J]. Pharm Res, 1995, 12: 807-816.
[46] Kuo YC, Lin PI, Wang CC. Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly(lactide-co-glycolide) nanoparticles [J]. Nanomedicine, 2011, 6: 1011-1026.
[47] Li Y, He H, Jia X, et al. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas [J]. Biomaterials, 2012, 33: 3899-3908.
[48] Mahajan SD, Law WC, Aalinkeel R, et al. Nanoparticle-mediated targeted delivery of antiretrovirals to the brain [J]. Methods Enzymol, 2012, 509: 41-60.
[49] Bao H, Jin X, Li L, et al. OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles: synthesis, characterization and evaluation of its brain delivery ability [J]. J Mater Sci Mater Med, 2012, 23: 1891-1901.
[50] Hu K, Shi Y, Jiang W, et al. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson's disease [J]. Int J Pharm, 2011, 415: 273-283.
[51] Chen H, Qin Y, Zhang Q, et al. Lactoferrin modified doxorubicin-loaded procationic liposomes for the treatment of gliomas [J]. Eur J Pharm Sci, 2011, 44: 164-173.
[52] Yu Y, Pang Z, Lu W, et al. Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery [J]. Pharm Res, 2012, 29: 83-96.
[53] Qiao R, Jia Q, Huwel S, et al. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier [J]. ACS Nano, 2012, 6: 3304-3310.
[54] Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system [J]. Nature, 2007, 448: 39-43.
[55] Kim SS, Ye C, Kumar P, et al. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment [J]. Mol Ther, 2010, 18: 993-1001.
[56] Zadran S, Akopian G, Zadran H, et al. RVG-Mediated calpain2 gene silencing in the brain impairs learning and memory [J]. Neuromolecular Med, 2013, 15: 74-81.
[57] Son S, Hwang do W, Singha K, et al. RVG peptide tethered bioreducible polyethylenimine for gene delivery to brain [J]. J Control Release, 2011, 155: 18-25.
[58] Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [J]. Nat Biotechnol, 2011, 29: 341-345.
[59] Kim JY, Choi WI, Kim YH, et al. Brain-targeted delivery of protein using chitosan-and RVG peptide-conjugated, pluronic-based nano-carrier [J]. Biomaterials, 2013, 34: 1170-1178.
[60] Demeule M, Currie JC, Bertrand Y, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2 [J]. J Neurochem, 2008, 106: 1534-1544.
[61] Demeule M, Regina A, Che C, et al. Identification and design of peptides as a new drug delivery system for the brain [J]. J Pharmacol Exp Ther, 2008, 324: 1064-1072.
[62] Ke W, Shao K, Huang R, et al. Gene delivery targeted to the brain using an angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer [J]. Biomaterials, 2009, 30: 6976-6985.
[63] Huang S, Li J, Han L, et al. Dual targeting effect of angiopep-2-modified, DNA-loaded nanoparticles for glioma [J]. Biomaterials, 2011, 32: 6832-6838.
[64] Sun X, Pang Z, Ye H, et al. Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome [J]. Biomaterials, 2012, 33: 916-924.
[65] Li J, Zhang Q, Pang Z, et al. Identification of peptide sequences that target to the brain using in vivo phage display [J]. Amino Acids, 2012, 42: 2373-2381.
[66] Li J, Feng L, Fan L, et al. Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides [J]. Biomaterials, 2011, 32: 4943-4950.
[67] Smith MW, Al-Jayyoussi G, Gumbleton M. Peptide sequences mediating tropism to intact blood-brain barrier: an in vivo biodistribution study using phage display [J]. Peptides, 2012, 38: 172-180.
[68] Wilner SE, Wengerter B, Maier K, et al. An RNA alternative to human transferrin: a new tool for targeting human cells [J]. Mol Ther Nucleic Acids, 2012, 1: e21.
[69] Cheng C, Chen YH, Lennox KA, et al. In vivo SELEX for identification of brain-penetrating aptamers [J]. Mol Ther Nucl Acid, 2013, 2: e67.
[70] Li J, Zhou L, Ye D, et al. Choline-derivate-modified nanoparticles for brain-targeting gene delivery [J]. Adv Mater, 2011, 23: 4516-4520.
[71] Geier EG, Schlessinger A, Fan H, et al. Structure-based ligand discovery for the large-neutral amino acid transporter 1, LAT-1 [J]. Proc Natl Acad Sci USA, 2013, 110: 5480-5485.
[72] Serrano ID, Ribeiro MM, Castanho MA. A focus on glucose-mediated drug delivery to the central nervous system [J]. Mini Rev Med Chem, 2012, 12: 301-312.
[73] Qin Y, Fan W, Chen H, et al. In vitro and in vivo investigation of glucose-mediated brain-targeting liposomes [J]. J Drug Target, 2010, 18: 536-549.
[74] Lu W. Adsorptive-mediated brain delivery systems [J]. Curr Pharm Biotechnol, 2012, 13: 2340-2348.
[75] Lu W, Wan J, She Z, et al. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle [J]. J Control Release, 2007, 118: 38-53.
[76] Lu W, Sun Q, Wan J, et al. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration [J]. Cancer Res, 2006, 66: 11878-11887.
[77] Kong SD, Lee J, Ramachandran S, et al. Magnetic targeting of nanoparticles across the intact blood-brain barrier [J]. J Control Release, 2012, 164: 49-57.
[78] Liu HL, Hua MY, Yang HW, et al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain [J]. Proc Natl Acad Sci USA, 2010, 107: 15205-15210.