Qihao Wu, Bastien Nay, Min Yang, Yeke Ni, Hong Wang, Ligong Yao, Xuwen Li. Marine sponges of the genus Stelletta as promising drug sources: chemical and biological aspects[J]. Acta Pharmaceutica Sinica B, 2019, 9(2): 237-257

Marine sponges of the genus Stelletta as promising drug sources: chemical and biological aspects
Qihao Wua,b, Bastien Nayc, Min Yanga, Yeke Nia, Hong Wangb, Ligong Yaoa, Xuwen Lia
a State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China;
b College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China;
c Laboratoire de Synthèse Organique (UMR 7652 CNRS), Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau Cedex, France
Marine sponges of the genus Stelletta are well known as rich sources of diverse and complex biologically relevant natural products, including alkaloids, terpenoids, peptides, lipids, and steroids. Some of these metabolites, with novel structures and promising biological activities, have attracted a lot of attention from chemists seeking to perform their total synthesis in parallel to intensive biological studies towards new drug leads. In this review, we summarized the distribution of the chemically investigated Stelletta sponges, the isolation, synthesis and biological activities of their secondary metabolites, covering the literature from 1982 to early 2018.
Key words:    Marine natural products    Stelletta sponge    Isolation    Total synthesis    Biological activity    Marine drug leads   
Received: 2018-07-24     Revised: 2018-09-20
DOI: 10.1016/j.apsb.2018.10.003
Funds: This paper is dedicated to Prof.Dr.Yuewei Guo on the occasion of his 60th birthday,for his pioneer work on Chinese marine natural product chemistry.This work was supported by the National Natural Science Foundation of China (NSFC,Nos.41676073,81520108028),the National Natural Science Foundation of China/Centre National de la Recherché Scientifique (NSFC/CNRS) joint project (No.81811530284), "Youth Innovation Promotion Association" (No.2016258) from Chinese Academy of Sciences,the SA-SIBS Scholarship Program,and the National Key Research and Development Program (2017YFE0103100).
Corresponding author: Xuwen Li
Author description:
PDF(KB) Free
Qihao Wu
Bastien Nay
Min Yang
Yeke Ni
Hong Wang
Ligong Yao
Xuwen Li

1. Cheung RC, Ng TB, Wong JH. Marine peptides:bioactivities and applications. Mar Drugs 2015;13:4006-43.
2. de Jesus Raposo MF, de Morais AM, de Morais RM. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 2015;13:2967-3028.
3. Li S, Ye F, Zhu Z, Huang H, Mao S, Guo Y. Cembrane-type diterpenoids from the South China Sea soft coral Sarcophyton mililatensis. Acta Pharm Sin B 2018.
4. Kang HK, Seo CH, Park Y. Marine peptides and their anti-infective activities. Mar Drugs 2015;13:618-54.
5. Wang YQ, Miao ZH. Marine-derived angiogenesis inhibitors for cancer therapy. Mar Drugs 2013;11:903-33.
6. Wu Q, Sun J, Chen J, Zhang H, Guo YW, Wang H. Terpenoids from marine soft coral of the genus Lemnalia:chemistry and biological activities. Mar Drugs 2018;16:320.
7. Wang SX, Zhang XS, Guan HS, Wang W. Potential anti-HPV and related cancer agents from marine resources:an overview. Mar Drugs 2014;12:2019-35.
8. Newman DJ, Cragg GM. Drugs and drug candidates from marine sources:an assessment of the current "state of play". Planta Med 2016;82:775-89.
9. Russo P, Kisialiou A, Lamonaca P, Moroni R, Prinzi G, Fini M. New drugs from marine organisms in Alzheimer's disease. Mar Drugs 2016;14:5.
10. Mayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, et al. The odyssey of marine pharmaceuticals:a current pipeline perspective. Trends Pharmacol Sci 2010;31:255-65.
11. Ebada SS, Proksch P. Chemical and pharmacological significance of natural guanidines from marine invertebrates. Mini Rev Med Chem 2011;11:225-46.
12. Grienke U, Silke J, Tasdemir D. Bioactive compounds from marine mussels and their effects on human health. Food Chem 2014;142:48-60.
13. Menna M. Important classes of bioactive alkaloids from marine ascidians:structures, isolation and bioactivity. Curr Top Med Chem 2014;14:207-23.
14. Bordbar S, Anwar F, Saari N. High-value components and bioactives from sea cucumbers for functional foods-a review. Mar Drugs 2011;9:1761-805.
15. Mehbub MF, Lei J, Franco C, Zhang W. Marine sponge derived natural products between 2001 and 2010:trends and opportunities for discovery of bioactives. Mar Drugs 2014;12:4539-77.
16. García-Ruiz C, Sarabia F. Chemistry and biology of bengamides and bengazoles, bioactive natural products from Jaspis sponges. Mar Drugs 2014;12:1580-622.
17. Wang W, Mun B, Lee Y, Venkat Reddy M, Park Y, Lee J, et al. Bioactive sesterterpenoids from a Korean sponge Monanchora sp. J Nat Prod 2013;76:170-7.
18. Youssef DT, Shaala LA, Alshali KZ. Bioactive hydantoin alkaloids from the Red Sea marine sponge Hemimycale arabica. Mar Drugs 2015;13:6609-19.
19. Mioso R, Marante FJ, Bezerra RS, Borges FV, Santos BV, Laguna IH. Cytotoxic compounds derived from marine sponges. A review (2010-2012). Molecules 2017;22:E208.
20. Lindequist U. Marine-derived pharmaceuticals-challenges and opportunities. Biomol Ther 2016;24:561-71.
21. Wang ZL, Zhang HJ, Lin HW, Sun JB, Liu GL, Zhang C. Secondary metabolites from marine sponges Stelletta and their bioactivities. Chin J Mar Drug 2004;23:42-7.
22. Hirota H, Matsunaga S, Fusetani N. Stellettahide A, an antifungal alkaloid from a marine sponge of the genus Stelletta. Tetrahedron Lett 1990;31:4163-4.
23. Abe Y, Saito SY, Hori M, Ozaki H, Fusetani N, Karaki H. Stellettamide-A, a novel inhibitor of calmodulin, isolated from a marine sponge. Br J Pharmacol 1997;121:1309-14.
24. Whitlock GA, Carreira EM. Enantioselective synthesis of entStellettamide A via a novel dipolar cycloaddition reaction of (trimethylsilyl)diazomethane. J Org Chem 1997;62:7916-7.
25. Yamazaki N, Suzuki T, Yoshimura Y, Kibayashi C, Aoyagi S. Asymmetric synthesis of Stellettamides A and C. Heterocycles 2008;75:285-90.
26. Shin J, Seo Y, Cho KW, Rho JR, Sim CJ. Stellettamide B, a new indolizidine alkaloid from a sponge of the genus Stelletta. J Nat Prod 1997;60:611-3.
27. Yamazaki N, Dokoshi W, Kibayashi C. Total synthesis of (-)-stellettamide B and determination of its absolute stereochemistry. Org Lett 2001;3:193-6.
28. Matsunaga S, Yamashita T, Tsukamoto S, Fusetani N. Three new antibacterial alkaloids from a marine sponge Stelletta species. J Nat Prod 1999;62:1202-4.
29. Tsukamoto S, Kato H, Hirota H, Fusetani N. Stellettadine A:a new acylated bisguanidinium alkaloid which induces larval metamorphosis in ascidians from a marine sponge Stelletta sp. Tetrahedron Lett 1996;37:5555-6.
30. Tsukamoto S, Yamashita T, Matsunaga S, Fusetani N. Bistellettadines A and B:two bioactive dimeric stellettadines from a marine sponge Stelletta sp. J Org Chem 1999;64:3794-5.
31. Nozawa D, Takikawa H, Mori K. Synthesis and absolute configuration of stellettadine A:a marine alkaloid that induces larval metamorphosis in ascidians. Bioorg Med Chem Lett 2001;11:1481-3.
32. Tsukamoto S, Yamashita T, Matsunaga S, Fusetani N. Stellettazole A:an antibacterial guanidinoimidazole alkaloid from a marine sponge Stelletta sp. Tetrahedron Lett 1999;40:737-8.
33. El-Naggar M, Piggott AM, Capon RJ. Bistellettazines A-C and bistellettazole A:new terpenyl-pyrrolizidine and terpenyl-imidazole alkaloids from a Southern Australian marine sponge, Stelletta sp. Org Lett 2008;10:4247-50.
34. Robertson J, Stevens K. Pyrrolizidine alkaloids:occurrence, biology, and chemical synthesis. Nat Prod Rep 2017;34:62-89.
35. Jin Z. Muscarine, imidazole, oxazole and thiazole alkaloids. Nat Prod Rep 2016;33:1268-371.
36. Gunawardana GP, Kohmoto S, Burres NS. New cytotoxic acridine alkaloids from two deep water marine sponges of the family Pachastrellidae. Tetrahedron Lett 1989;30:4359-62.
37. Fusetani N, Asai N, Matsunaga S, Honda K, Yasumuro K. Cyclostellettamines A-F, pyridine alkaloids which inhibit binding of methyl quinuclidinyl benzilate (QNB) to muscarinic acetylcholine receptors, from the marine sponge, Stelletta maxima. Tetrahedron Lett 1994;35:3967-70.
38. Nathanson NM. Molecular properties of the muscarinic acetylcholine receptor. Ann Rev Neurosci 1987;10:195-236.
39. Yazawa H, Honda K. The M3-muscarinic cholinoceptor subtype in rat prostate and its down regulation by aging. Jpn J Pharmacol 1993;61:319-24.
40. Sfecci E, Lacour T, Amade P, Mehiri M. Polycyclic guanidine alkaloids from Poecilosclerida marine sponges. Mar Drugs 2016;14:77.
41. Liu J, Li XW, Guo YW. Recent advances in the isolation, synthesis and biological activity of marine guanidine alkaloids. Mar Drugs 2017;15:324.
42. Berlinck RG, Bertonha AF, Takaki M, Rodriguez JP. The chemistry and biology of guanidine natural products. Nat Prod Rep 2017;34:1264-301.
43. McCabe T, Clardy J, Minale L, Pizza C, Zollo F, Riccio R. A triterpenoid pigment with the isomalabaricane skeleton from the marine sponge Stelletta sp. Tetrahedron Lett 1982;23:3307-10.
44. Su JY, Meng YH, Zeng LM, Fu X, Schmitz FJ. Stellettin A, a new triterpenoid pigment from the marine sponge Stelletta tenuis. J Nat Prod 1994;57:1450-1.
45. Ravi BN, Wells RJ, Croft KD. Malabaricane triterpenes from a Fijian collection of the sponge Jaspis stellifera. J Org Chem 1981;46:1998-2001.
46. McCormick JL, McKee TC, Cardellina Ⅱ JH, Leid M, Boyd MR. Cytotoxic triterpenes from a marine sponge, Stelletta sp. J Nat Prod 1996;59:1047-50.
47. Lin HW, Wang ZL, Wu JH, Shi N, Zhang HJ, Chen WS, et al. Stellettins L and M, cytotoxic isomalabaricane-type triterpenes, and sterols from the marine sponge Stelletta tenuis. J Nat Prod 2007;70:1114-7.
48. Xue DQ, Mao SC, Yu XQ, Guo YW. Isomalabaricane triterpenes with potent protein-tyrosine phosphatase 1B (PTP1B) inhibition from the Hainan sponge Stelletta sp. Biochem Syst Ecol 2013;49:101-6.
49. Li Y, Tang H, Tian X, Lin H, Wang M, Yao M. Three new cytotoxic isomalabaricane triterpenes from the marine sponge Stelletta tenuis. Fitoterapia 2015;106:226-30.
50. Barrero AF, Oltra JE, Herrador MM, Cabrera E, Sanchez JF, Quílez JF, et al. Gibepyrones:α-pyrones from Gibberella fujikuroi. Tetrahedron 1993;49:141-50.
51. Tang S, Xu R, Lin W, Duan H. Jaspiferin A and B:two new secondary metabolites from the South China Sea sponge Jaspis stellifera. Rec Nat Prod 2012;6:398-401.
52. Ryu G, Matsunaga S, Fusetani N. Globostellatic acids A-D, new cytotoxic isomalabaricane triterpenes from the marine sponge Stelletta globostellata. J Nat Prod 1996;59:512-4.
53. Oku N, Matsunaga S, Wada SI, Watabe S, Fusetani N. New isomalabaricane triterpenes from the marine sponge Stelletta globostellata that induce morphological changes in rat fibroblasts. J Nat Prod 2000;63:205-9.
54. Imae Y, Takada K, Okada S, Ise Y, Yoshimura H, Morii Y, et al. Isolation of ciliatamide D from a marine sponge Stelletta sp. and a reinvestigation of the configuration of ciliatamide A. J Nat Prod 2013;76:755-8.
55. Nakao Y, Kawatsu S, Okamoto C, Okamoto M, Matsumoto Y, Matsunaga S, et al. Ciliatamides A-C, bioactive lipopeptides from the deep-sea sponge Aaptos ciliata. J Nat Prod 2008;71:469-72.
56. Lewis JA, Daniels RN, Lindsley CW. Total synthesis of ciliatamides A-C:stereochemical revision and the natural product-guided synthesis of unnatural analogs. Org Lett 2008;10:4545-8.
57. Takada K, Irie R, Suo R, Matsunaga S. Resolution of the confusion in the assignments of configuration for the ciliatamides, acylated dipeptides from marine sponges. J Nat Prod 2017;80:2845-9.
58. Zhou X, Liu J, Yang B, Lin X, Yang XW, Liu Y. Marine natural products with anti-HIV activities in the last decade. Curr Med Chem 2013;20:953-73.
59. Anjum K, Abbas SQ, Akhter N, Shagufta BI, Shah SA, Hassan SS. Emerging biopharmaceuticals from bioactive peptides derived from marine organisms. Chem Biol Drug Des 2017;90:12-30.
60. Sagar S, Kaur M, Minneman KP. Antiviral lead compounds from marine sponges. Mar Drugs 2010;8:2619-38.
61. Andavan GS, Lemmens-Gruber R. Cyclodepsipeptides from marine sponges:natural agents for drug research. Mar Drugs 2010;8:810-34.
62. Lemmens-Gruber R, Kamyar MR, Dornetshuber R. Cyclodepsipeptides-potential drugs and lead compounds in the drug development process. Curr Med Chem 2009;16:1122-37.
63. Plaza A, Gustchina E, Baker HL, Kelly M, Bewley CA. Mirabamides A-D, depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion. J Nat Prod 2007;70:1753-60.
64. Ramamoorthy G, Acevedo CM, Alvira E, Lipton MA. Synthesis and spectroscopic correlation of the diastereoisomers of 2,3-dihydroxy-2,6,8-trimethyldeca-(4Z,6E)-dienoic acid:implications for the structures of papuamides A-D and mirabamides A-D. Tetrahedron:Asymmetry 2008;19:2546-54.
65. Lu Z, Van Wagoner RM, Harper MK, Baker HL, Hooper JN, Bewley CA, et al. Mirabamides E-H, HIV-inhibitory depsipeptides from the sponge Stelletta clavosa. J Nat Prod 2011;74:185-93.
66. Shin HJ, Rashid MA, Cartner LK, Bokesch HR, Wilson JA, McMahon JB, et al. Stellettapeptins A and B, HIV-inhibitory cyclic depsipeptides from the marine sponge Stelletta sp. Tetrahedron Lett 2015;56:4215-9.
67. Dembitsky VM, Rezanka T, Srebnik M. Lipid compounds of freshwater sponges:family Spongillidae, class Demospongiae. Chem Phys Lipids 2003;123:117-55.
68. Meng Y, Su J, Zeng L. Chemical constituent studies on the marine sponge Stelletta tenuis (Lindgren). Acta Sci Nat Univ Sunyatseni 1996;35:70-3.
69. Zhao Q, Lee SY, Hong J, Lee CO, Im KS, Sim CJ, et al. New acetylenic acids from the marine sponge Stelletta species. J Nat Prod 2003;66:408-11.
70. Park C, Kim GY, Kim WI, Hong SH, Park DI, Kim ND, et al. Induction of apoptosis by (Z)-stellettic acid C, an acetylenic acid from the sponge Stelletta sp., is associated with inhibition of telomerase activity in human leukemic U937 cells. Chemotherapy 2007;53:160-8.
71. Lee HS, Rho JR, Sim CJ, Shin J. New acetylenic acids from a sponge of the genus Stelletta. J Nat Prod 2003;66:566-8.
72. Zhao Q, Mansoor TA, Hong J, Lee CO, Im KS, Lee DS, et al. New lysophosphatidylcholines and monoglycerides from the marine sponge Stelletta sp. J Nat Prod 2003;66:725-8.
73. Lee SY, Zhao Q, Choi KT, Hong JK, Lee DS, Lee CO, et al. A new glycerol ether from a marine sponge Stelletta species. Nat Prod Sci 2003;9:232-4.
74. Zhao Q, Liu Y, Hong J, Lee CO, Park JH, Lee DS, et al. A new cyclitol derivative from a sponge Stelletta species. Nat Prod Sci 2003;9:18-21.
75. Gil JH, Hong JY, Jung JH, Kim KJ, Hong J. Structural determination of monoacylglycerols extracted from marine sponge by fast atom bombardment tandem mass spectrometry. Rapid Commun Mass Spectrom 2007;21:1264-70.
76. Chen J, Wu Q, Hua Y, Chen J, Zhang H, Wang H. Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Appl Microbiol Biotechnol 2017;101:8309-19.
77. Peddie V, Takada K, Okuda S, Ise Y, Morii Y, Yamawaki N, et al. Cytotoxic glycosylated fatty acid amides from a Stelletta sp. marine sponge. J Nat Prod 2015;78:2808-13.
78. Li J, Wang Z, Yang F, Jiao WH, Lin HW, Xu SH. Two new steroids with cytotoxicity from the marine sponge Dactylospongia elegans collected from the South China Sea. Nat Prod Res 2018;4:1-5.
79. Fiorucci S, Distrutti E, Bifulco G, D'Auria MV, Zampella A. Marine sponge steroids as nuclear receptor ligands. Trends Pharmacol Sci 2012;33:591-601.
80. Guerriero A, Debitus C, Pietra F. On the first marine stigmastane sterols and sterones having a 24,25-double bond. Isolation from the sponge Stelletta sp. of deep coral sea. Helv Chim Acta 1991 487-94.
81. Deng SZ, Liu AM, Deng FY, Zhou HQ, Ma K, Nakamura H. Structure elucidation of 24-methylene-27-methylcholesterol from South China Sea sponge (Seletta tenuis Lindgren). Chin J Org Chem 1992;12:501-3.
82. Li H, Matsunaga S, Fusetani N. A new 9,11-secosterol, stellettasterol from a marine sponge Stelletta sp. Experientia 1994;50:771-3.
83. Capon RJ, Faulkner DJ. Herbasterol, an ichthyotoxic 9,11-secosterol from the sponge Dysidea herbacea. J Org Chem 1985;50:4771-3.
84. Yan SJ, Su JY, Zhang GW, Wang YH, Li H. Steroids from the marine sponge Stelletta tenuis Lindgren. Acta Sci Nat Univ Sunyatseni 2001;40:54-7.
85. Miyamoto T, Kodama K, Aramaki Y, Higuchi R, Van Soest RW. Orostanal, a novel abeo-sterol inducing apoptosis in leukemia cell from a marine sponge. Stelletta hiwasaensis Tetrahedron Lett 2001;42:6349-51.
86. Lin WH, Fang JM, Cheng YS. Diterpenoids and steroids from Taiwania cryptomerioides. Phytochemistry 1998;48:1391-7.
87. Smith TE, Pond CD, Pierce E, Harmer ZP, Kwan J, Zachariah MM, et al. Accessing chemical diversity from the uncultivated symbionts of small marine animals. Nat Chem Biol 2018;14:179-85.
88. Kiran GS, Sekar S, Ramasamy P, Thinesh T, Hassan S, Lipton AN, et al. Marine sponge microbial association:towards disclosing unique symbiotic interactions. Mar Environ Res 2018.
89. Oleinikova GK, Dmitrenok AS, Voinov VG, Chaikina EL, Shevchenko LS, Kuznetsova TA. Bacillomycin D from the marine isolate of Bacillus subtilis KMM 1922. Chem Nat Comp 2005;41:461-4.
90. Li Z, Peng C, Shen Y, Miao X, Zhang H, Lin H. L, L-Diketopiperazines from Alcaligenes faecalis A72 associated with South China Sea sponge Stelletta tenuis. Biochem Syst Ecol 2008;36:230-4.
91. Zhang P, Bao B, Dang HT, Hong J, Lee HJ, Yoo ES, et al. Antiinflammatory sesquiterpenoids from a sponge-derived fungus Acremonium sp. J Nat Prod 2009;72:270-5.
92. Liu S, Wang H, Su M, Hwang GJ, Hong J, Jung JH. New metabolites from the sponge-derived fungus Aspergillus sydowii J05B-7F-4. Nat Prod Res 2017;31:1682-6.
93. Jetten M, Peters CA, Van Nispen JW, Ottenheijm HC. A one-pot N-protection of L-arginine. Tetrahedron Lett 1991;32:6025-8.
94. Stoilova V, Trifonov LS, Orahovats AS. A convenient one-flask synthesis of 1-methylazetidines from 3-aminoalkanols, triphenylphosphine, and carbon tetrachloride. Synthesis 1979;2:105-6.
95. Myers AG, Yang BH, Chen H, Gleason JL. Use of pseudoephedrine as a practical chiral auxiliary for asymmetric synthesis. J Am Chem Soc 1994;116:9361-2.
96. Morley C, Knight DW, Share AC. Complementary enantioselective routes to the quinolizidine alkaloids lupinine and epilupinine. Tetrahedron:Asymmetry 1990;1:147-50.
97. Kennedy JP, Williams L, Bridges TM, Daniels RN, Weaver D, Lindsley CW. Application of combinatorial chemistry science on modern drug discovery. J Comb Chem 2008;10:345-54.
98. Liu WK, Cheung FW, Che CT. Stellettin A induces oxidative stress and apoptosis in HL-60 human leukemia and LNCaP prostate cancer cell lines. J Nat Prod 2006;69:934-7.
99. Folmer F, Jaspars M, Solano G, Cristofanon S, Henry E, Tabudravu J, et al. The inhibition of TNF-α-induced NF-κB activation by marine natural products. Biochem Pharmacol 2009;78:592-606.
100. Liu WK, Ling YH, Cheung FW, Che CT. Stellettin A induces endoplasmic reticulum stress in murine B16 melanoma cells. J Nat Prod 2012;75:586-90.
101. Liu WK, Ho JC, Che CT. Apoptotic activity of isomalabaricane triterpenes on human promyelocytic leukemia HL60 cells. Cancer Lett 2005;230:102-10.
102. Tang SA, Zhou Q, Guo WZ, Qiu Y, Wang R, Jin M, et al. In vitro antitumor activity of stellettin B, a triterpene from marine sponge Jaspis stellifera, on human glioblastoma cancer SF295 cells. Mar Drugs 2014;12:4200-13.
103. Wang R, Zhang Q, Peng X, Zhou C, Zhong Y, Chen X, et al. Stellettin B induces G1 arrest, apoptosis and autophagy in human non-small cell lung cancer A549 cells via blocking PI3K/Akt/mTOR pathway. Sci Rep 2016;6:27071.
104. Chen Y, Zhou Q, Zhang L, Zhong Y, Fan G, Zhang Z, et al. Stellettin B induces apoptosis in human chronic myeloid leukemia cells via targeting PI3K and Stat5. Oncotarget 2017;8:28906-21.
105. Urda C, Pérez M, Rodríguez J, Fernández R, Jiménez C, Cuevas C. Njaoamine I, a cytotoxic polycyclic alkaloid from the Haplosclerida sponge Haliclona (Reniera) sp. Tetrahedron Lett 2018;59:2577-80.
106. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 2016;34:828-37.