Original Articles
Mingxia Zhao, Wenjie Guo, Yuanyuan Wu, Chenxi Yang, Liang Zhong, Guoliang Deng, Yuyu Zhu, Wen Liu, Yanhong Gu, Yin Lu, Lingdong Kong, Xiangbao Meng, Qiang Xu, Yang Sun. SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade[J]. Acta Pharmaceutica Sinica B, 2019, 9(2): 304-315

SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade
Mingxia Zhaoa, Wenjie Guoa, Yuanyuan Wub, Chenxi Yanga, Liang Zhongc, Guoliang Denga, Yuyu Zhua, Wen Liua, Yanhong Gud, Yin Lub, Lingdong Konga, Xiangbao Menga,c, Qiang Xua, Yang Suna
a State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China;
b Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
c State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
d Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
Tyrosine phosphatase SHP2 is a promising drug target in cancer immunotherapy due to its bidirectional role in both tumor growth promotion and T-cell inactivation. Its allosteric inhibitor SHP099 is known to inhibit cancer cell growth both in vitro and in vivo. However, whether SHP099-mediated SHP2 inhibition retards tumor growth in vivo via anti-tumor immunity remains elusive. To address this, a CT-26 colon cancer xenograft model was established in mice since this cell line is insensitive to SHP099. Consequently, SHP099 minimally affected CT-26 tumor growth in immuno-deficient nude mice, but significantly decreased the tumor burden in CT-26 tumor-bearing mice with intact immune system. SHP099 augmented anti-tumor immunity, as shown by the elevated proportion of CD8+IFN-γ+ T cells and the upregulation of cytotoxic T-cell related genes including Granzyme B andPerforin, which decreased the tumor load. In addition, tumor growth in mice with SHP2-deficient T-cells was markedly slowed down because of enhanced anti-tumor responses. Finally, the combination of SHP099 and antiPD-1 antibody showed a higher therapeutic efficacy than either monotherapy in controlling tumor growth in two colon cancer xenograft models, indicating that these agents complement each other. Our study suggests that SHP2 inhibitor SHP099 is a promising candidate drug for cancer immunotherapy.
Key words:    Cancer immunotherapy    SHP2    SHP099    PD-1    Colon cancer   
Received: 2018-07-16     Revised: 2018-08-18
DOI: 10.1016/j.apsb.2018.08.009
Funds: We thank Dr.Chong Sun (The Netherlands Cancer Institute,The Netherlands) for valuable advice on this project.This work was supported by National Natural Science Foundation of China (Nos.81673436,21472091,81872877,81673437),Mountain-Climbing Talents Project of Nanjing University,the Open Fund of State Key Laboratory of Pharmaceutical Biotechnology,Nanjing University (No.KF-GN-201703,China),Open Project Program of Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica (No.JKLPSE201802,China) and the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD,China).
Corresponding author: Xiangbao Meng, Qiang Xu, Yang Sun     Email:xbmeng@bjmu.edu.cn;molpharm@163.com;yangsun@nju.edu.cn
Author description:
PDF(KB) Free
Mingxia Zhao
Wenjie Guo
Yuanyuan Wu
Chenxi Yang
Liang Zhong
Guoliang Deng
Yuyu Zhu
Wen Liu
Yanhong Gu
Yin Lu
Lingdong Kong
Xiangbao Meng
Qiang Xu
Yang Sun

1. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013;13:227-42.
2. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005;25:9543-53.
3. Munn DH, Bronte V. Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 2016;39:1-6.
4. Ostrand-Rosenberg S, Horn LA, Haile ST. The programmed death-1 immune-suppressive pathway:barrier to antitumor immunity. J Immunol 2014;193:3835-41.
5. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-64.
6. Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O'Connell S, et al. VISTA is an immune checkpoint molecule for human T cells. Cancer Res 2014;74:1924-32.
7. Kane LP. T cell Ig and mucin domain proteins and immunity. J Immunol 2010;184:2743-9.
8. Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev 2017;276:80-96.
9. Feng GS, Hui CC, Pawson T. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science 1993;259:1607-11.
10. Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE. Crystal structure of the tyrosine phosphatase SHP-2. Cell 1998;92:441-50.
11. Qu CK. The SHP-2 tyrosine phosphatase:signaling mechanisms and biological functions. Cell Res 2000;10:279-88.
12. Liu JJ, Li Y, Chen WS, Liang Y, Wang G, Zong M, et al. SHP2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic b-catenin, PIK3CA and MET. J Hepatol 2018;69:79-88.
13. Aceto N, Sausgruber N, Brinkhaus H, Gaidatzis D, Martiny-Baron G, Mazzarol G, et al. Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nat Med 2012;18:529-37.
14. Liu KW, Feng HZ, Bachoo R, Kazlauskas A, Smith EM, Symes K, et al. SHP-2/PTPN11 mediates gliomagenesis driven by PDGFRA and INK4A/ARF aberrations in mice and humans. J Clin Invest 2011;121:905-17.
15. Xu RZ, Yu Y, Zheng S, Zhao XY, Dong QH, He ZW, et al. Overexpression of SHP2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood 2005;106:3142-9.
16. Chen YN, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, Acker MG, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 2016;535:148-52.
17. Matozaki T, Murata Y, Saito Y, Okazawa H, Ohnishi H. Protein tyrosine phosphatase SHP-2:a proto-oncogene product that promotes Ras activation. Cancer Sci 2009;100:1786-93.
18. Mainardi S, Mulero-Sanchez A, Prahallad A, Germano G, Bosma A, Krimpenfort P, et al. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. Nat Med 2018;24:961-7.
19. Ruess DA, Heynen GJ, Ciecielski KJ, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med 2018;24:954-60.
20. Wong GS, Zhou J, Liu JB, Wu Z, Xu X, Li T, et al. Targeting wildtype KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat Med 2018;24:968-77.
21. Tajan M, de Rocca Serra A, Valet P, Edouard T, Yart A. SHP2 sails from physiology to pathology. Eur J Med Genet 2015;58:509-25.
22. Salmond RJ, Alexander DR. SHP2 forecast for the immune system:fog gradually clearing. Trends Immunol 2006;27:154-60.
23. Hui E, Cheung J, Zhu J, Su X, Taylor M, Wallweber H, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 2017;355:1428-33.
24. Li J, Jie HB, Lei Y, Gildener-Leapman N, Trivedi S, Green T, et al. PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment. Cancer Res 2015;75:508-18.
25. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 2012;209:1201-17.
26. Liu W, Guo W, Shen L, Chen Z, Luo Q, Luo X, et al. T lymphocyte SHP2-deficiency triggers anti-tumor immunity to inhibit colitisassociated cancer in mice. Oncotarget 2017;8:7586-97.
27. Peng S, Hang N, Liu W, Guo W, Jiang C, Yang X, et al. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NFkappaB pathways. Acta Pharm Sin B 2016;6:205-11.
28. Sang X, Wang R, Han Y, Zhang C, Shen H, Yang Z, et al. T cell-associated immunoregulation and antiviral effect of oxymatrine in hydrodynamic injection HBV mouse model. Acta Pharm Sin B 2017;7:311-8.
29. Han T, Xiang DM, Sun W, Liu N, Sun HL, Wen W, et al. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. J Hepatol 2015;63:650-60.
30. Sedy JR, Gavrieli M, Potter KG, Hurchla MA, Lindsley RC, Hildner K, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol 2005;6:90-8.
31. Garcia Fortanet J, Chen CH, Chen YN, Chen Z, Deng Z, Firestone B, et al. Allosteric inhibition of SHP2:identification of a potent, selective, and orally efficacious phosphatase inhibitor. J Med Chem 2016;59:7773-82.
32. Miah SM, Jayasuriya CT, Salter AI, Reilly EC, Fugere C, Yang W, et al. Ptpn11 deletion in CD4+ cells does not affect T cell development and functions but causes cartilage tumors in a T cell-independent manner. Front Immunol 2017;8:1326.
33. Dong B, Gao Y, Zheng X, Gao G, Gu H, Chen X, et al. T cell activation is reduced by the catalytically inactive form of protein tyrosine phosphatase SHP-2. Int J Clin Exp Med 2015;8:6568-77.
34. Wu X, Guo W, Wu L, Gu Y, Gu L, Xu S, et al. Selective sequestration of STAT1 in the cytoplasm via phosphorylated SHP-2 ameliorates murine experimental colitis. J Immunol 2012;189:3497-507.
35. Rota G, Niogret C, Dang AT, Barros CR, Fonta NP, Alfei F, et al. Shp-2 is dispensable for establishing T cell exhaustion and for PD-1 signaling in vivo. Cell Rep 2018;23:39-49.
36. Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E, et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell 2015;162:1242-56.