Original Articles
Jiabing Wang, Lili Huang, Chanchan Cheng, Ge Li, Jingwen Xie, Mengya Shen, Qian Chen, Wulan Li, Wenfei He, Peihong Qiu, Jianzhang Wu. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents[J]. Acta Pharmaceutica Sinica B, 2019, 9(2): 335-350

Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents
Jiabing Wanga,b, Lili Huanga,c, Chanchan Chenga, Ge Lia, Jingwen Xiea, Mengya Shena, Qian Chena, Wulan Lia,d, Wenfei Hea, Peihong Qiua, Jianzhang Wua
a Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China;
b Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou 318000, China;
c Ningbo Medical Centre Li Huili Hospital, Ningbo 315041, China;
d College of Information Science and Computer Engineering, Wenzhou Medical University, Wenzhou 325035, China
Abstract:
Scavenging reactive oxygen species (ROS) by antioxidants is the important therapy to cerebral ischemia-reperfusion injury (CIRI) in stroke. The antioxidant with novel dual-antioxidant mechanism of directly scavenging ROS and indirectly through antioxidant pathway activation may be a promising CIRI therapeutic strategy. In our study, a series of chalcone analogues were designed and synthesized, and multiple potential chalcone analogues with dual antioxidant mechanisms were screened. Among these compounds, the most active 33 not only conferred cytoprotection of H2O2-induced oxidative damage in PC12 cells through scavenging free radicals directly and activating NRF2/ARE antioxidant pathway at the same time, but also played an important role against ischemia/reperfusion-related brain injury in animals. More importantly, in comparison with mono-antioxidant mechanism compounds, 33 exhibited higher cytoprotective and neuroprotective potential in vitro and in vivo. Overall, our findings showed compound 33 could emerge as a promising anti-ischemic stroke drug candidate and provided novel dual-antioxidant mechanism strategies and concepts for oxidative stress-related diseases treatment.
Key words:    Reactive oxygen species    Cerebral ischemiareperfusion injury    Stroke    Dual-antioxidant mechanism    Chalcones    Antioxidants    Oxidative stress    NRF2/ARE   
Received: 2018-10-29     Revised: 2018-12-03
DOI: 10.1016/j.apsb.2019.01.003
Funds: The work was supported by ZheJiang Province Natural Science Funding of China (Nos. LQ18H280008, Y19B020043, and LY17H160059, China), the National Natural Science Foundation of China (No. 81803580, China), University Students in Zhejiang Science and Technology Innovation Projects (No. 2018R413004, China), National Undergraduate Training Programs for Innovation and Entrepreneurship (No. 201810343025, China) and Granted by the Opening Project of Zhejiang Provincial Top Key Discipline of Pharmaceutical Sciences.
Corresponding author: Peihong Qiu, Jianzhang Wu     Email:wjzwzmc@126.com;wjzwzmu@163.com
Author description:
Service
PDF(KB) Free
Print
0
Authors
Jiabing Wang
Lili Huang
Chanchan Cheng
Ge Li
Jingwen Xie
Mengya Shen
Qian Chen
Wulan Li
Wenfei He
Peihong Qiu
Jianzhang Wu

References:
1. Flynn RW, MacWalter RS, Doney AS. The cost of cerebral ischaemia. Neuropharmacology 2008;55:250-6.
2. Durai Pandian J, Padma V, Vijaya P, Sylaja PN, Murthy JM. Stroke and thrombolysis in developing countries. Int J Stroke 2007;2:17-26.
3. Uchino K. Presenting to primary stroke centers or comprehensive stroke centers for thrombolysis. JAMA Neurol 2017;74:1269.
4. Wu J, Ling J, Wang X, Li T, Liu J, Lai Y, et al. Discovery of a potential anti-ischemic stroke agent:3-pentylbenzo[c]thiophen-1(3H)-one. J Med Chem 2012;55:7173-81.
5. Candelario-Jalil E. Injury and repair mechanisms in ischemic stroke:considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs 2009;10:644-54.
6. Yen TL, Hsu CK, Lu WJ, Hsieh CY, Hsiao G, Chou DS, et al. Neuroprotective effects of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), in ischemic stroke of rats. J Agric Food Chem 2012;60:1937-44.
7. Eltzschig HK, Eckle T. Ischemia and reperfusion-from mechanism to translation. Nat Med 2011;17:1391-401.
8. Pantazi E, Bejaoui M, Folch-Puy E, Adam R, Roselló-Catafau J. Advances in treatment strategies for ischemia reperfusion injury. Expert Opin Pharmacother 2016;17:169-79.
9. Trippier PC, Jansen Labby K, Hawker DD, Mataka JJ, Silverman RB. Target-and mechanism-based therapeutics for neurodegenerative diseases:strength in numbers. J Med Chem 2013;56:3121-47.
10. Pérez-González A, Galano A. OH radical scavenging activity of Edaravone:mechanism and kinetics. J Phys Chem B 2011;115:1306-14.
11. Dinkova-Kostova AT, Talalay P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 2008;52:S128-38.
12. Jung KA, Kwak MK. The NRF2 system as a potential target for the development of indirect antioxidants. Molecules 2010;15:7266-91.
13. Magesh S, Chen Y, Hu L. Small molecule modulators of KEAP1-NRF2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev 2012;32:687-726.
14. Guo Z. The modification of natural products for medical use. Acta Pharm Sin B 2017;7:119-36.
15. Rigano D, Sirignano C, Taglialatela-Scafati O. The potential of natural products for targeting PPARα. Acta Pharm Sin B 2017;7:427-38.
16. Wu JZ, Xi YY, Huang LL, Li G, Mao QQ, Fang CY, et al. A steroidtype antioxidant targeting the KEAP1/NRF2/ARE signaling pathway from the soft coral Dendronephthya gigantea. J Nat Prod 2018;81:2567-75.
17. Dimmock JR, Elias DW, Beazely MA, Kandepu NM. Bioactivities of chalcones. Curr Med Chem 1999;6:1125-49.
18. Niu H, Wang W, Li J, Lei Y, Zhao Y, Yang W, et al. A novel structural class of coumarin-chalcone fibrates as PPARα/γ agonists with potent antioxidant activities:design, synthesis, biological evaluation and molecular docking studies. Eur J Med Chem 2017;138:212-20.
19. Cheng JH, Hung CF, Yang SC, Wang JP, Won SJ, Lin CN. Synthesis and cytotoxic, anti-inflammatory, and anti-oxidant activities of 2',5'-dialkoxylchalcones as cancer chemopreventive agents. Bioorg Med Chem 2008;16:7270-6.
20. El Sayed Aly MR, Abd El Razek Fodah HH, Saleh SY. Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes. Eur J Med Chem 2014;76:517-30.
21. Wu JZ, Wang C, Cai YP, Peng J, Liang DL, Zhao YJ, et al. Synthesis and crystal structure of chalcones as well as on cytotoxicity and antibacterial properties. Med Chem Res 2012;21:444-52.
22. Lorenzo P, Alvarez R, Ortiz MA, Alvarez S, Piedrafita FJ, De Lera ÁR. Inhibition of IκB kinase-β and anticancer activities of novel chalcone adamantyl arotinoids. J Med Chem 2008;51:5431-40.
23. Zhu M, Wang JB, Xie JW, Chen LP, Wei XY, Jiang X, et al. Design, synthesis, and evaluation of chalcone analogues incorporate α,β-unsaturated ketone functionality as anti-lung cancer agents via evoking ROS to induce pyroptosis. Eur J Med Chem 2018;157:1395-405.
24. Tuncel S, Fournier-dit-Chabert J, Albrieux F, Ahsen V, Ducki S, Dumoulin F. Towards dual photodynamic and antiangiogenic agents:design and synthesis of a phthalocyanine-chalcone conjugate. Org Biomol Chem 2012;10:1154-7.
25. Zhang YL, Wu JZ, Ying SL, Chen GZ, Wu BB, Xu TT, et al. Discovery of new MD2 inhibitor from chalcone derivatives with antiinflammatory effects in LPS-induced acute lung injury. Sci Rep 2016;6:25130-42.
26. Wu J, Li J, Cai Y, Pan Y, Ye F, Zhang Y, et al. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J Med Chem 2011;54:8110-23.
27. Menezes JC, Kamat SP, Cavaleiro JA, Gaspar A, Garrido J, Borges F. Synthesis and antioxidant activity of long chain alkyl hydroxycinnamates. Eur J Med Chem 2011;46:773-7.
28. Gaspar A, Martins M, Silva P, Garrido EM, Garrido J, Firuzi O, et al. Dietary phenolic acids and derivatives. Evaluation of the antioxidant activity of sinapic acid and its alkyl esters. J Agric Food Chem 2010;58:11273-80.
29. Cos P, Rajan P, Vedernikova I, Calomme M, Pieters L, Vlietinck AJ, et al. In vitro antioxidant profile of phenolic acid derivatives. Free Radic Res 2002;36:711-6.
30. Teixeira J, Cagide F, Benfeito S, Soares P, Garrido J, Baldeiras I, et al. Development of a mitochondriotropic antioxidant based on caffeic acid:proof of concept on cellular and mitochondrial oxidative stress models. J Med Chem 2017;60:7084-98.
31. Kumar V, Kumar S, Hassan M, Wu H, Thimmulappa RK, Kumar A, et al. Novel chalcone derivatives as potent NRF2 activators in mice and human lung epithelial cells. J Med Chem 2011;54:4147-59.
32. Kozlowski D, Trouillas P, Calliste C, Marsal P, Lazzaroni R, Duroux JL. Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. J Phys Chem A 2007;111:1138-45.
33. Rao YK, Fang SH, Tzeng YM. Synthesis and biological evaluation of 3',4',5'-trimethoxychalcone analogues as inhibitors of nitric oxide production and tumor cell proliferation. Bioorg Med Chem 2009;17:7909-14.
34. Meng CQ, Ni L, Worsencroft KJ, Ye Z, Weingarten MD, Simpson JE, et al. Carboxylated, heteroaryl-substituted chalcones as inhibitors of vascular cell adhesion molecule-1 expression for use in chronic inflammatory diseases. J Med Chem 2007;50:1304-15.
35. Bandgar BP, Patil SA, Korbad BL, Nile SH, Khobragade CN. Synthesis and biological evaluation of β-chloro vinyl chalcones as inhibitors of TNF-α and IL-6 with antimicrobial activity. Eur J Med Chem 2010;45:2629-33.
36. Ning X, Guo Y, Wang X, Ma X, Tian C, Shi X, et al. Design, synthesis, and biological evaluation of (E)-3,4-dihydroxystyryl aralkyl sulfones and sulfoxides as novel multifunctional neuroprotective agents. J Med Chem 2014;57:4302-12.
37. Talalay P, Dinkova-Kostova AT, Holtzclaw WD. Importance of phase 2 gene regulation in protection against electrophile and reactive oxygen toxicity and carcinogenesis. Adv EnzymeRegul 2003;43:121-34.
38. Yao J, Zhang B, Ge C, Peng S, Fang J. Xanthohumol, a polyphenol chalcone present in hops, activating NRF2 enzymes to confer protection against oxidative damage in PC12 cells. J Agric Food Chem 2015;63:1521-31.
39. Peng S, Zhang B, Meng X, Yao J, Fang J. Synthesis of piperlongumine analogues and discovery of nuclear factor erythroid 2-related factor 2 (NRF2) activators as potential neuroprotective agents. J Med Chem 2015;58:5242-55.
40. Peng S, Hou Y, Yao J, Fang J. Activation of NRF2-driven antioxidant enzymes by cardamonin confers neuroprotection of PC12 cells against oxidative damage. Food Funct 2017;8:997-1007.
41. Olatunji OJ, Chen H, Zhou Y. Neuroprotective effect of trans-Ncaffeoyltyramine from Lycium chinese against H2O2 induced cytotoxicity in PC12 cells by attenuating oxidative stress. Biomed Pharmacother 2017;93:895-902.
42. Cao GS, Li SX, Wang Y, Xu YQ, Lv YN, Kou JP, et al. A combination of four effective components derived from Sheng-mai san attenuates hydrogen peroxide-induced injury in PC12 cells through inhibiting Akt and MAPK signaling pathways. Chin J Nat Med 2016;14:508-17.
43. Wu JZ, Cheng CC, Shen LL, Wang ZK, Wu SB, Li WL, et al. Synthetic chalcones with potent antioxidant ability on H2O2-induced apoptosis in PC12 cells. Int J Mol Sci 2014;15:18525-39.
44. Huang L, Wang J, Chen L, Zhu M, Wu S, Chu S, et al. Design, synthesis, and evaluation of NDGA analogues as potential anti-ischemic stroke agents. Eur J Med Chem 2018;143:1165-73.
45. Jiao ZZ, Yue S, Sun HX, Jin TY, Wang HN, Zhu RX, et al. Indoline amide glucosides from Portulaca oleracea:isolation, structure, and DPPH radical scavenging activity. J Nat Prod 2015;78:2588-97.
46. Chen J, Zeng L, Xia T, Li S, Yan T, Wu S, et al. Toward a biomarker of oxidative stress:a fluorescent probe for exogenous and endogenous malondialdehyde in living cells. Anal Chem 2015;87:8052-6.
47. Wu J, Ren J, Yao S, Wang J, Huang L, Zhou P, et al. Novel antioxidants' synthesis and their anti-oxidative activity through activating NRF2 signaling pathway. Bioorg Med Chem Lett 2017;27:1616-9.
48. Wang X, Wang L, Li T, Huang Z, Lai Y, Ji H, et al. Novel hybrids of optically active ring-opened 3-n-butylphthalide derivative and isosorbide as potential anti-ischemic stroke agents. J Med Chem 2013;56:3078-89.
49. Liu Y, Ai K, Ji X, Askhatova D, Du R, Lu L, et al. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J Am Chem Soc 2017;139:856-62.
50. The IST-3 Collaborative Group. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial[IST-3]):a randomised controlled trial. Lancet 2012;379:2352-63.
51. Evenson KR, Rosamond WD, Morris DL. Prehospital and in-hospital delays in acute stroke care. Neuroepidemiology 2001;20:65-76.
52. Chang C, Zhao Y, Song G, She K. Resveratrol protects hippocampal neurons against cerebral ischemia-reperfusion injury via modulating JAK/ERK/STAT signaling pathway in rats. J Neuroimmunol 2018;315:9-14.
53. Farías JG, Molina VM, Carrasco RA, Zepeda AB, Figueroa E, Letelier P, et al. Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients 2017;9:966-88.
54. Patel RP, Lang JD, Smith AB, Crawford JH. Redox therapeutics in hepatic ischemia reperfusion injury. World J Hepatol 2014;6:1-8.
55. Margaill I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke. Free Radic Biol Med 2005;39:429-43.
56. Dennis JM, Witting PK. Protective role for antioxidants in acute kidney disease. Nutrients 2017;9:718.
57. Panizo N, Rubio-Navarro A, Amaro-Villalobos JM, Egido J, Moreno JA. Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury. Kidney Blood Press Res 2015;40:520-32.
58. Carroll JE, Howard EF, Hess DC, Wakade CG, Chen Q, Cheng C. Nuclear factor-κB activation during cerebral reperfusion:effect of attenuation with N-acetylcysteine treatment. Mol Brain Res 1998;56:186-91.
59. Shah ZA, Li RC, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S, et al. Role of reactive oxygen species in modulation of NRF2 following ischemic reperfusion injury. Neuroscience 2007;147:53-9.
60. Shih AY, Li P, Murphy TH. A small-molecule-inducible NRF2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci 2005;25:10321-35.
61. Sun J, Ren X, Simpkins JW. Sequential upregulation of superoxide dismutase 2 and heme oxygenase 1 by tert-butylhydroquinone protects mitochondria during oxidative stress. Mol Pharm 2015;88:437-49.
62. Joko S, Watanabe M, Fuda H, Takeda S, Furukawa T, Hui SP, et al. Comparison of chemical structures and cytoprotection abilities between direct and indirect antioxidants. J Funct Foods 2017;35:245-55.
63. Manev H, Uz T, Kharlamov A, Joo JY. Increased brain damage after stroke or excitotoxic seizures in melatonin-deficient rats. FASEB J 1996;10:1546-51.
64. Ren J, Fan C, Chen N, Huang J, Yang Q. Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor NRF2 and HO-1 in rats. Neurochem Res 2011;36:2352-62.
65. Yang C, Zhang X, Fan H, Liu Y. Curcumin upregulates transcription factor NRF2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 2009;1282:133-41.
66. Jeon KH, Lee E, Jun KY, Eom JE, Kwak SY, Na Y, et al. Neuroprotective effect of synthetic chalcone derivatives as competitive dual inhibitors against mu-calpain and cathepsin B through the downregulation of tau phosphorylation and insoluble Aβ peptide formation. Eur J Med Chem 2016;121:433-44.
67. Padmavathi G, Roy NK, Bordoloi D, Arfuso F, Mishra S, Sethi G, et al. Butein in health and disease:a comprehensive review. Phytomedicine 2017;25:118-27.
68. Lee MJ, Lee HS, Kim H, Yi HS, Park SD, Moon HI, et al. Antioxidant properties of benzylchroman derivatives from Caesalpinia sappan L. against oxidative stress evaluated in vitro. J Enzym Inhib Med Chem 2010;25:608-14.
69. Wang W, Chen W, Yang YS, Liu TX, Yang HY, Xin ZH. New phenolic compounds from coreopsis tinctoria nutt. and their antioxidant and angiotensin I-converting enzyme inhibitory activities. J Agric Food Chem 2015;63:200-7.
70. Chiruta C, Schubert D, Dargusch R, Maher P. Chemical modification of the multitarget neuroprotective compound fisetin. J Med Chem 2012;55:378-89.
71. Dziedzic SZ, Hudson BJF. Polyhydroxy chalcones and flavanones as antioxidants for edible oils. Food Chem 1983;12:205-12.
72. Benayahoum A, Amira-Guebailia H, Houache OA. DFT method for the study of the antioxidant action mechanism of resveratrol derivatives. J Mol Model 2013;19:2285-98.
73. Foti C, Piattelli M, Baratta MT, Ruberto G. Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. Structure-activity relationship. J Agric Food Chem 1996;44:497-501.
74. Sogawa S, Nihro Y, Ueda H, Izumi A, Miki T, Matsumoto H, et al. 3,4-Dihydroxychalcones as potent 5-lipoxygenase and cyclooxygenase inhibitors. J Med Chem 1993;36:3904-9.
75. Bodiwala HS, Sabde S, Gupta P, Mukherjee R, Kumar R, Garg P, et al. Design and synthesis of caffeoyl-anilides as portmanteau inhibitors of HIV-1 integrase and CCR5. Bioorg Med Chem 2011;19:1256-63.
76. Sharma N, Joshi YC. Synthesis of substituted chalcones under solventfree microwave irradiation conditions and their antimicrobial evaluation. Int J Pharm Pharm Sci 2012;4:436-9.
77. Bai XG, Xu CL, Zhao SS, He HW, Wang YC, Wang JX. Synthesis and cytotoxic evaluation of alkoxylated chalcones. Molecules 2014;19:17256-78.
78. Wu JZ, Li WL, Chen LZ, Chu SH, Zhao CG, Wei TY, et al. Synthesis, crystal structure, antioxidant activity of chalcones and its spiroheterocyclic analogues. Chin J Org Chem 2012;32:2141-7.
79. odorova IT, Batovska DI, Stamboliyska BA. Evaluation of the radical scavenging activity of a series of synthetic hydroxychalcones towards the DPPH radical. J Serb Chem Soc 2011;76:491-7.
80. Raghavan S, Manogaran P, Venkatraman G. Synthesis and anticancer activity of chalcones derived from vanillin and isovanillin. Med Chem Res 2015;24:1-9.
81. Dahae L, Ki Hyun K, Sung Won M. Synthesis and biological evaluation of chalcone analogues as protective agents against cisplatin-induced cytotoxicity in kidney cells. Bioorg Med Chem Lett 2015;25:1929-32.
82. Rao YK, Fang SH, Tzeng YM. Synthesis and biological evaluation of 30,40,50-trimethoxychalcone analogues as inhibitors of nitric oxide production and tumor cell proliferation. Bioorg Med Chem 2009;17:7909-14.
83. Bhat BA, Dhar KL, Puri SC. Synthesis and biological evaluation of chalcones and their derived pyrazoles as potential cytotoxic agents. Bioorg Med Chem Lett 2005;15:3177-80.
84. Lopez SN, Castelli MV, Zacchino SA, Dominguez JN, Lobo G, Charris-Charris J, et al. In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorg Med Chem 2001;9:1999-2013.
85. Yamali C, Ozgun DO, Gul HI. Synthesis and structure elucidation of 1-(2,5/3,5-difluorophenyl)-3-(2,3/2,4/2,5/3,4-dimethoxyphenyl)-2-propen-1-ones as anticancer agents. Med Chem Res 2017;26:1-9.
86. Srinivasan B, Johnson TE, Lad R, Xing C. Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3',4',5'-tetramethoxychalcone and its analogues as potent nuclear factor κB inhibitors and their anticancer activities. J Med Chem 2009;52:7228-35.
87. Ivanova AB, Batovska DI, Todorova IT, Stamboliyska BA, Serly J, Molnar J. Comparative study on the MDR reversal effects of selected chalcones. Int J Med Chem 2011;2011:530780-7.
88. Gu XH, Yu H, Jacobson AE, Rothman RB, Dersch CM, George C, et al. Design, synthesis, and monoamine transporter binding site affinities of methoxy derivatives of indatraline. J Med Chem 2000;43:4868-76.
89. Pathak V, Ahmad I, Kahlon AK. Syntheses of 2-methoxyestradiol and eugenol template based diarylpropenes as non-steroidal anticancer agents. RSC Adv 2014;4:35171-85.
90. Mikulski D, Górniak R, Molski M. A theoretical study of the structureradical scavenging activity of trans-resveratrol analogues and cisresveratrol in gas phase and water environment. Eur J Med Chem 2010;45:1015-27.
91. Braca A, Sortino C, Politi M, Morelli I, Mendez J. Antioxidant activity of flavonoids from Licania licaniaeflora. J Ethnopharmacol 2002;79:379-81.
92. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc 2008;3:1101-8.
93. Xu HL, Mao KL, Lu CT, Fan ZL, Yang JJ, Xu J, et al. An injectable acellular matrix scaffold with absorbable permeable nanoparticles improves the therapeutic effects of docetaxel on glioblastoma. Biomaterials 2016;107:44-60.
94. Himori N, Watanabe H, Akaike N, Kurasawa M, Itoh J, Tanaka Y. Cerebral ischemia model with conscious mice:involvement of NMDA receptor activation and derangement of learning and memory ability. J Pharmacol Methods 1990;23:311-27.