Dongjian Zhang, Meng Gao, Qiaomei Jin, Yicheng Ni, Jian Zhang. Updated developments on molecular imaging and therapeutic strategies directed against necrosis[J]. Acta Pharmaceutica Sinica B, 2019, 9(3): 455-468

Updated developments on molecular imaging and therapeutic strategies directed against necrosis
Dongjian Zhanga,b, Meng Gaoa,b, Qiaomei Jina,b, Yicheng Nia,b,c, Jian Zhanga,b
a Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China;
b Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China;
c Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
Cell death plays important roles in living organisms and is a hallmark of numerous disorders such as cardiovascular diseases, sepsis and acute pancreatitis. Moreover, cell death also plays a pivotal role in the treatment of certain diseases, for example, cancer. Noninvasive visualization of cell death contributes to gained insight into diseases, development of individualized treatment plans, evaluation of treatment responses, and prediction of patient prognosis. On the other hand, cell death can also be targeted for the treatment of diseases. Although there are many ways for a cell to die, only apoptosis and necrosis have been extensively studied in terms of cell death related theranostics. This review mainly focuses on molecular imaging and therapeutic strategies directed against necrosis. Necrosis shares common morphological characteristics including the rupture of cell membrane integrity and release of cellular contents, which provide potential biomarkers for visualization of necrosis and necrosis targeted therapy. In the present review, we summarize the updated joint efforts to develop molecular imaging probes and therapeutic strategies targeting the biomarkers exposed by necrotic cells. Moreover, we also discuss the challenges in developing necrosis imaging probes and propose several biomarkers of necrosis that deserve to be explored in future imaging and therapy research.
Key words:    Necrosis avid agents    Exposed DNA    Molecular imaging    Targeted therapy    Solid tumor    Myocardial infarction   
Received: 2018-11-19     Revised:
DOI: 10.1016/j.apsb.2019.02.002
Funds: This work was supported by the National Natural Science Foundation of China (Nos. 81473120, 81501536 and 81771870).
Corresponding author: Jian Zhang,
Author description:
PDF(KB) Free
Dongjian Zhang
Meng Gao
Qiaomei Jin
Yicheng Ni
Jian Zhang

1. Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet 2017;389:197-210.
2. Hotchkiss RS, Tinsley KW, Karl IE. Role of apoptotic cell death in sepsis. Scand J Infect Dis 2003;35:585-92.
3. Kang R, Lotze MT, Zeh HJ, Billiar TR, Tang D. Cell death and DAMPs in acute pancreatitis. Mol Med 2014;20:466-77.
4. Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000;1:120-9.
5. Rello-Varona S, Herrero-Martin D, Lopez-Alemany R, MunozPinedo C, Tirado OM. "(Not) all (dead) things share the same breath":identification of cell death mechanisms in anticancer therapy. Cancer Res 2015;75:913-7.
6. Philchenkov A. Radiation-induced cell death:signaling and pharmacological modulation. Crit Rev Oncog 2018;23:13-37.
7. Jesus Perez-Perez M, Priego E-M, Bueno O, Martins MS, Canela M-D, Liekens S. Blocking blood flow to solid tumors by destabilizing tubulin:an approach to targeting tumor growth. J Med Chem 2016;59:8685-711.
8. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines:recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012;19:107-20.
9. Ke B, Tian M, Li J, Liu B, He G. Targeting programmed cell death using small-molecule compounds to improve potential cancer therapy. Med Res Rev 2016;36:983-1035.
10. Conrad M, Angeli JPF, Vandenabeele P, Stockwell BR. Regulated necrosis:disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2016;15:348.
11. Smith BA, Smith BD. Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjugate Chem 2012;23:1989-2006.
12. Neves AA, Brindle KM. Imaging cell death. J Nucl Med 2014;55:1-4.
13. Flotats A, Carrió I. Non-invasive in vivo imaging of myocardial apoptosis and necrosis. Eur J Nucl Med Mol Imaging 2003;30:615-30.
14. Silvestre-Roig C, de Winther MP, Weber C, Daemen MJ, Lutgens E, Soehnlein O. Atherosclerotic plaque destabilization mechanisms, models, and therapeutic strategies. Circ Res 2014;114:214-26.
15. Xia J, Yin A, Li Z, Liu X, Peng X, Xie N. Quantitative analysis of lipid-rich necrotic core in carotid atherosclerotic plaques by in vivo magnetic resonance imaging and clinical outcomes. Med Sci Monit 2017;23:2745-50.
16. Gonzalez L, Trigatti BL. Macrophage apoptosis and necrotic core development in atherosclerosis:a rapidly advancing field with clinical relevance to imaging and therapy. Can J Cardiol 2017;33:303-12.
17. Chen SL, Yu LK, Jiang CY, Zhao Y, Sun D, Li SY, et al. Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer. J Clin Oncol 2005;23:1538-47.
18. Croce CM, Reed JC. Finally, an apoptosis-targeting therapeutic for cancer. Cancer Res 2016;76:5914-20.
19. Hdeib A, Sloan A. Targeted radioimmunotherapy:the role of 131 I-chTNT-1/B mAb (Cotaras) for treatment of high-grade gliomas. Future Oncol 2012;8:659-69.
20. Wang K, Na MH, Hoffman AS, Shim G, Han SE, Oh YK, Kwon IC, et al. In situ dose amplification by apoptosis-targeted drug delivery. J Control Release 2011;154:214-7.
21. He X, Bonaparte N, Kim S, Acharya B, Lee JY, Chi L, et al. Enhanced delivery of T cells to tumor after chemotherapy using membrane-anchored, apoptosis-targeted peptide. J Control Release 2012;162:521-8.
22. Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X. Molecular imaging of apoptosis:from micro to macro. Theranostics 2015;5:559-82.
23. Savla R, Minko T. Nanoparticle design considerations for molecular imaging of apoptosis:diagnostic, prognostic, and therapeutic value. Adv Drug Deliv Rev 2017;113:122-40.
24. Moreno-Gonzalez G, Vandenabeele P, Krysko DV. Necroptosis:a novel cell death modality and its potential relevance for critical care medicine. Am J Resp Crit Care 2016;194:415-28.
25. Parseghian MH, Mechetner E, Osidak MS, Domogatskii SP. Application of monoclonal antibodies for the diagnostic and therapeutic targeting of human tumors with a necrotic component. Russ J Gen Chem 2014;84:345-56.
26. Cona MM, Oyen R, Ni Y. Necrosis avidity of organic compounds:a natural phenomenon with exploitable theragnostic potentials. Curr Med Chem 2015;22:1829-49.
27. Xie B, Stammes MA, van Driel PBAA, Cruz LJ, Knol-Blankevoort VT, Lowik MAM, et al. Necrosis avid near infrared fluorescent cyanines for imaging cell death and their use to monitor therapeutic efficacy in mouse tumor models. Oncotarget 2015;6:39036-49.
28. Fang C, Wang K, Zeng C, Chi C, Shang W, Ye J, et al. Illuminating necrosis:from mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green. Sci Rep 2016;6:21013.
29. Patel SJ, Shapiro WR, Laske DW, Jensen RL, Asher AL, Wessels BW, et al. Safety and feasibility of convection-enhanced delivery of cotara for the treatment of malignant glioma:initial experience in 51 patients. Neurosurgery 2005;56:1243-52.
30. Shapiro WR, Carpenter SP, Roberts K, Shan JS. 131I-chTNT-1/B mAb:tumour necrosis therapy for malignant astrocytic glioma. Exp Opin Biol Ther 2006;6:539-45.
31. Hdeib A, Sloan AE. Convection-enhanced delivery of 131I-chTNT-1/B mAB for treatment of high-grade adult gliomas. Exp Opin Biol Ther 2011;11:799-806.
32. Ye L, Fan J, Shi X, Tao Q, Ye D, Xian Z, et al. Tumor necrosis therapy antibody interleukin-2 fusion protein elicits prolonged and targeted antitumor effects in vivo. Appl Microbiol Biot 2014;98:4053-61.
33. Fallon J, Tighe R, Kradjian G, Guzman W, Bernhardt A, Neuteboom B, et al. The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget 2014;5:1869-84.
34. Schilbach K, Alkhaled M, Welker C, Eckert F, Blank G, Ziegler H, et al. Cancer-targeted IL-12 controls human rhabdomyosarcoma by senescence induction and myogenic differentiation. Oncoimmunology 2015;4:e1014760.
35. Eckert F, Schmitt J, Zips D, Krueger MA, Pichler BJ, Gillies SD, et al. Enhanced binding of necrosis-targeting immunocytokine NHS-IL12 after local tumour irradiation in murine xenograft models. Cancer Immunol Immun 2016;65:1003-13.
36. Eckert F, Jelas I, Oehme M, Huber SM, Sonntag K, Welker C, et al. Tumor-targeted IL-12 combined with local irradiation leads to systemic tumor control via abscopal effects in vivo. Oncoimmunology 2017;6:e1323161.
37. Fallon JK, Vandeveer AJ, Schlom J, Greiner JW. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody. Oncotarget 2017;8:20558-71.
38. Xu C, Zhang Y, Rolfe PA, Hernandez VM, Guzman W, Kradjian G, et al. Combination therapy with NHS-muIL12 and avelumab (antiPD-L1) enhances antitumor efficacy in preclinical cancer models. Clin Cancer Res 2017;23:5869-80.
39. Hornick JL, Sharifi J, Khawli LA, Hu PS, Bai WG, Alauddin MM, et al. Single amino acid substitution in the Fc region of chimeric TNT-3 antibody accelerates clearance and improves immunoscintigraphy of solid tumors. J Nucl Med 2000;41:355-62.
40. Khawli LA, Alauddin MM, Hu PS, Epstein AL. Tumor targeting properties of indium-111 labeled genetically engineered Fab' and F(ab')2 constructs of chimeric tumor necrosis treatment (chTNT)-3 antibody. Cancer Biother Radiopharm 2003;18:931-40.
41. Khawli LA, Biela B, Hu PS, Epstein AL. Comparison of recombinant derivatives of chimeric TNT-3 antibody for the radioimaging of solid tumors. Hybrid Hybridom 2003;22:1-9.
42. Jang JK, Khawli LA, Park R, Wu BW, Li Z, Canter D, et al. Cytoreductive chemotherapy improves the biodistribution of antibodies directed against tumor necrosis in murine solid tumor models. Mol Cancer Ther 2013;12:2827-36.
43. Tu J, Ji J, Wu F, Wang Y, Zhang D, Zhao Z, et al. Effectiveness of combined 131I-chTNT and radiofrequency ablation therapy in treating advanced hepatocellular carcinoma. Cell Biochem Biophys 2015;71:777-84.
44. Bryan RA, Jiang Z, Jandl T, Strauss J, Koba W, Onyedika C, et al. Treatment of experimental pancreatic cancer with 213-Bismuthlabeled chimeric antibody to single-strand DNA. Exp Rev Anticancer Ther 2014;14:1243-9.
45. Jang JK, Chretin J, Bruyette D, Hu P, Epstein AL. Phase 1 doseescalation study with LEC/chTNT-3 and toceranib phosphate (Palladias) in dogs with spontaneous malignancies. J Cancer Sci Ther 2015;7:167-74.
46. Jang JK, Khawli LA, Canter DC, Hu P, Zhu TH, Wu BW, et al. Systemic delivery of chTNT-3/CpG immunoconjugates for immunotherapy in murine solid tumor models. Cancer Immunol Immun 2016;65:511-23.
47. Garanger E, Hilderbrand SA, Blois JT, Sosnovik DE, Weissleder R, Josephson L. A DNA-binding Gd chelate for the detection of cell death by MRI. Chem Commun 2009:4444-6.
48. Huang S, Chen HH, Yuan H, Dai G, Schuhle DT, Mekkaoui C, et al. Molecular MRI of acute necrosis with a novel DNA-binding gadolinium chelate:kinetics of cell death and clearance in infarcted myocardium. Circ Cardiovasc Imag 2011;4:729-37.
49. Dasari M, Lee S, Sy J, Kim D, Lee S, Brown M, et al. Hoechst-IR:an imaging agent that detects necrotic tissue in vivo by binding extracellular DNA. Org Lett 2010;12:3300-3.
50. Dasari M, Acharya AP, Kim D, Lee S, Lee S, Rhea J, et al. H-Gemcitabine:a new gemcitabine prodrug for treating cancer. Bioconjugate Chem 2013;24:4-8.
51. Khan RS, Martinez MD, Sy JC, Pendergrass KD, Che P-l, Brown ME, et al. Targeting extracellular DNA to deliver IGF-1 to the injured heart. Sci Rep 2014;4:4257.
52. Kim S, Park J, Youn YS, Oh KT, Bae JH, Lee ES. Hoechst 33258-conjugated hyaluronated fullerene for efficient photodynamic tumor therapy and necrotic tumor targeting. J Bioact Compat Pol 2015;30:275-88.
53. Zhang D, Gao M, Yao N, Jiang C, Liu W, Li T, et al. Preclinical evaluation of radioiodinated Hoechst 33258 for early prediction of tumor response to treatment of vascular-disrupting agents. Contrast Media Mol Imaging 2018;2018:Article ID 5237950.
54. Fonge H, Vunckx K, Wang H, Feng Y, Mortelmans L, Nuyts J, et al. Non-invasive detection and quantification of acute myocardial infarction in rabbits using mono-[123I]iodohypericin mSPECT. Eur Heart J 2008;29:260-9.
55. Feng Y, Cona MM, Vunckx K, Li Y, Chen F, Nuyts J, et al. Detection and quantification of acute reperfused myocardial infarction in rabbits using DISA-SPECT/CT and 3.0 T cardiac MRI. Int J Cardiol 2013;168:4191-8.
56. Cona MM, Feng Y, Li Y, Chen F, Vunckx K, Zhou L, et al. Comparative study of iodine-123-labeled hypericin and Tc-99mlabeled hexakis 2-methoxy isobutyl isonitrile in a rabbit model of myocardial infarction. J Cardiovasc Pharm 2013;62:304-11.
57. Li J, Sun Z, Zhang J, Shao H, Cona MM, Wang H, et al. A dualtargeting anticancer approach:soil and seed principle. Radiology 2011;260:799-807.
58. Song S, Xiong C, Zhou M, Lu W, Huang Q, Ku G, et al. Smallanimal PET of tumor damage induced by photothermal ablation with 64 Cu-Bis-DOTA-hypericin. J Nucl Med 2011;52:792-9.
59. Van de Putte M, Marysael T, Fonge H, Roskams T, Cona MM, Li J, et al. Radiolabeled iodohypericin as tumor necrosis avid tracer:diagnostic and therapeutic potential. Int J Cancer 2012;131:E129-37.
60. Li J, Cona MM, Chen F, Feng Y, Zhou L, Yu J, et al. Exploring theranostic potentials of radioiodinated hypericin in rodent necrosis models. Theranostics 2012;2:1010-9.
61. Li J, Cona MM, Chen F, Feng Y, Zhou L, Zhang G, et al. Sequential systemic administrations of combretastatin A4 phosphate and radioiodinated hypericin exert synergistic targeted theranostic effects with prolonged survival on SCID mice carrying bifocal tumor xenografts. Theranostics 2013;3:127-37.
62. Liu W, Zhang D, Feng Y, Li Y, Huang D, Jiang C, et al. Biodistribution and anti-tumor efficacy of intratumorally injected necrosis-avid theranostic agent radioiodinated hypericin in rodent tumor models. J Drug Target 2015;23:371-9.
63. Zhu M, Lin X-A, Zha X-M, Zhou W-B, Xia T-S, Wang S. Evaluation of the therapeutic efficacy of sequential therapy involving percutaneous microwave ablation in combination with 131I-hypericin using the VX2 rabbit breast solid tumor model. PLoS One 2015;10:e0120303.
64. Shao H, Zhang J, Sun Z, Chen F, Dai X, Li Y, et al. Necrosis targeted radiotherapy with iodine-131-labeled hypericin to improve anticancer efficacy of vascular disrupting treatment in rabbit VX2 tumor models. Oncotarget 2015;6:14247-59.
65. Gao L, Zhang J, Ma T, Yao N, Gao M, Shan X, et al. Improved therapeutic outcomes of thermal ablation on rat orthotopic liver allograft sarcoma models by radioiodinated hypericin induced necrosis targeted radiotherapy. Oncotarget 2016;7:51450-61.
66. Cona MM, de Witte P, Verbruggen A, Ni Y. An overview of translational (radio)pharmaceutical research related to certain oncological and non-oncological applications. World J Methodol 2013;3:45-64.
67. Li J, Zhang J, Yang S, Jiang C, Zhang D, Jin Q, et al. Synthesis and preclinical evaluation of radioiodinated hypericin dicarboxylic acid as a necrosis avid agent in rat models of induced hepatic, muscular, and myocardial necroses. Mol Pharm 2016;13:232-40.
68. Duan X, Yin Z, Jiang C, Jin Q, Zhang D, Sun Z, et al. Radioiodinated hypericin disulfonic acid sodium salts as a DNA-binding probe for early imaging of necrotic myocardium. Eur J Pharm Biopharm 2017;117:151-9.
69. Jin Q, Zhao J, Gao M, Feng Y, Liu W, Yin Z, et al. Evaluation of necrosis avidity and potential for rapid imaging of necrotic myocardium of radioiodinated hypocrellins. Mol Imaging Biol 2018;20:551-61.
70. Wang Q, Yang S, Jiang C, Li J, Wang C, Chen L, et al. Discovery of radioiodinated monomeric anthraquinones as a novel class of necrosis avid agents for early imaging of necrotic myocardium. Sci Rep 2016;6:21341.
71. Luo Q, Jin Q, Su C, Zhang D, Jiang C, Fish AF, et al. Radiolabeled rhein as small-molecule necrosis avid agents for imaging of necrotic myocardium. Anal Chem 2017;89:1260-6.
72. Ji A-Y, Jin Q-M, Zhang D-J, Zhu H, Su C, Duan X-H, et al. Novel 18 F-labeled 1-hydroxyanthraquinone derivatives for necrotic myocardium imaging. ACS Med Chem Lett 2017;8:191-5.
73. Su C, Zhang D, Bao N, Ji A, Feng Y, Chen L, et al. Evaluation of radioiodinated 1,4-naphthoquinones as necrosis avid agents for rapid myocardium necrosis imaging. Mol Imaging Biol 2018;20:74-84.
74. Liang J, Sun Z, Zhang D, Jin Q, Cai L, Ma L, et al. First evaluation of radioiodinated flavonoids as necrosis-avid agents and application in early assessment of tumor necrosis. Mol Pharm 2018;15:207-15.
75. Xie BW, Park D, Van Beek ER, Blankevoort V, Orabi Y, Que I, et al. Optical imaging of cell death in traumatic brain injury using a heat shock protein-90 alkylator. Cell Death Dis 2013;4:e473.
76. Park D, Xie B-W, Van Beek ER, Blankevoort V, Que I, Lowik CWGM, et al. Optical imaging of treatment-related tumor cell death using a heat shock protein-90 alkylator. Mol Pharm 2013;10:3882-91.
77. Tahara N, Zandbergen HR, de Haas HJ, Petrov A, Pandurangi R, Yamaki T, et al. Noninvasive molecular imaging of cell death in myocardial infarction using 111In-GSAO. Sci Rep 2014;4:6826.
78. Yamaki T, de Haas HJ, Tahara N, Petrov A, Mohar D, Haider N, et al. Cardioprotection by minocycline in a rabbit model of ischemia/reperfusion injury:detection of cell death by in vivo 111In-GSAO SPECT. J Nucl Cardiol 2018;25:94-100.
79. Park D, Don AS, Massamiri T, Karwa A, Warner B, MacDonald J, et al. Noninvasive imaging of cell death using an Hsp90 ligand. J Am Chem Soc 2011;133:2832-5.
80. Staudacher AH, Al-Ejeh F, Fraser CK, Darby JM, Roder DM, Ruszkiewicz A, et al. The La antigen is over-expressed in lung cancer and is a selective dead cancer cell target for radioimmunotherapy using the La-specific antibody APOMABs. EJNMMI Res 2014;4:2.
81. Al-Ejeh F, Darby JM, Brown MP. Chemotherapy synergizes with radioimmunotherapy targeting La autoantigen in tumors. PLoS One 2009;4:e4630.
82. Al-Ejeh F, Darby JM, Tsopelas C, Smyth D, Manavis J, Brown MP. APOMABs, a La-specific monoclonal antibody, detects the apoptotic tumor response to life-prolonging and DNA-damaging chemotherapy. PLoS One 2009;4:e4558.
83. Staudacher AH, Bezak E, Borysenko A, Brown MP. Targeted alphatherapy using 227Th-APOMAB and cross-fire antitumour effects:preliminary in-vivo evaluation. Nucl Med Commun 2014;35:1284-90.
84. Sadeghi H, Rahmanian N, Amiri FT, Amirfakhrian H, Abedi SM, Hosseinimehr SJ. 99mTc-Glucarate for assessment of paclitaxel therapy in human ovarian cancer in mice. Iran J Basic Med Sci 2018;21:77-82.
85. Wildhagen KCAA, Garcia de Frutos P, Reutelingsperger CP, Schrijver R, Areste C, Ortega-Gomez A, et al. Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood 2014;123:1098-101.
86. Wang F, Zhang N, Li B, Liu L, Ding L, Wang Y, et al. Heparin defends against the toxicity of circulating histones in sepsis. Front Biosci 2015;20:1259-70.
87. Nagano F, Mizuno T, Mizumoto S, Yoshioka K, Takahashi K, Tsuboi N, et al. Chondroitin sulfate protects vascular endothelial cells from toxicities of extracellular histones. Eur J Pharm 2018;826:48-55.
88. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nat Med 2009;15:1318-21.
89. Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol 2011;187:2626-31.
90. Allam R, Scherbaum CR, Darisipudi MN, Mulay SR, Haegele H, Lichtnekert J, et al. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol 2012;23:1375-88.
91. Venereau E, De Leo F, Mezzapelle R, Careccia G, Musco G, Bianchi ME. HMGB1 as biomarker and drug target. Pharm Res 2016;111:534-44.
92. Ugrinova I, Pasheva E. HMGB1 protein:a therapeutic target inside and outside the cell. Adv Protein Chem Struct Biol 2017;107:37-76.
93. Andersson U, Yang H, Harris H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Exp Opin Ther Targets 2018;22:263-77.
94. Lundback P, Lea JD, Sowinska A, Ottosson L, Furst CM, Steen J, et al. A novel high mobility group box 1 neutralizing chimeric antibody attenuates drug-induced liver injury and postinjury inflammation in mice. Hepatology 2016;64:1699-710.
95. Musumeci D, Roviello GN, Montesarchio D. An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther 2014;141:347-57.
96. Horiuchi T, Sakata N, Narumi Y, Kimura T, Hayashi T, Nagano K, et al. Metformin directly binds the alarmin HMGB1 and inhibits its proinflammatory activity. J Biol Chem 2017;292:8436-46.
97. Gallagher FA, Kettunen MI, Hu D-E, Jensen PR, in't Zandt R, Karlsson M, et al. Production of hyperpolarized[1,4-13C2]malate from[1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci U S A 2009;106:19801-6.
98. Witney TH, Kettunen MI, Hu De, Gallagher FA, Bohndiek SE, Napolitano R, et al. Detecting treatment response in a model of human breast adenocarcinoma using hyperpolarised[1-13C]pyruvate and[1,4-13C2]fumarate. Br J Cancer 2010;103:1400-6.
99. Clatworthy MR, Kettunen MI, Hu D-E, Mathews RJ, Witney TH, Kennedy BWC, et al. Magnetic resonance imaging with hyperpolarized[1,4-13C2]fumarate allows detection of early renal acute tubular necrosis. Proc Natl Acad Sci U S A 2012;109:13374-9.
100. Miller JJ, Lau AZ, Nielsen PM, McMullen-Klein G, Lewis AJ, Jespersen NR, et al. Hyperpolarized[1,4-13C2]fumarate enables magnetic resonance-based imaging of myocardial necrosis. JACCCardiovasc Imag 2018;11:1594-606.
101. Feuerecker B, Durst M, Michalik M, Schneider G, Saur D, Menzel M, et al. Hyperpolarized 13C diffusion MRS of co-polarized pyruvate and fumarate to measure lactate export and necrosis. J Cancer 2017;8:3078-85.
102. Liu X, Feng Y, Jiang C, Lou B, Li Y, Liu W, et al. Radiopharmaceutical evaluation of 131I-protohypericin as a necrosis avid compound. J Drug Target 2015;23:417-26.
103. Liu X, Jiang C, Zhang D, Gao M, Peng F, Huang D, et al. Tumor necrosis targeted radiotherapy of non-small cell lung cancer using radioiodinated protohypericin in a mouse model. Oncotarget 2015;6:26400-10.
104. Ji Y, Jiang C, Zhang X, Liu W, Gao M, Li Y, et al. Necrosis-targeted combinational theragnostic approach to treat cancer. Oncotarget 2014;5:2934-46.
105. Jiang C, Gao M, Li Y, Huang D, Yao N, Ji Y, et al. Exploring diagnostic potentials of radioiodinated sennidin A in rat model of reperfused myocardial infarction. Int J Pharm 2015;495:31-40.
106. Zhang D, Huang D, Ji Y, Jiang C, Li Y, Gao M, et al. Experimental evaluation of radioiodinated sennoside B as a necrosis-avid tracer agent. J Drug Target 2015;23:180-90.
107. Li L, Zhang D, Yang S, Song S, Li J, Wang Q, et al. Effects of glycosylation on biodistribution and imaging quality of necrotic myocardium of iodine-131-labeled sennidins. Mol Imaging Biol 2016;18:877-86.
108. Wang C, Jin Q, Yang S, Zhang D, Wang Q, Li J, et al. Synthesis and evaluation of 131I-skyrin as a necrosis avid agent for potential targeted radionuclide therapy of solid tumors. Mol Pharm 2016;13:180-9.
109. Cruz LJ, Que I, Aswendt M, Chan A, Hoehn M, Lowik C. Targeted nanoparticles for the non-invasive detection of traumatic brain injury by optical imaging and fluorine magnetic resonance imaging. Nano Res 2016;9:1276-89.
110. Stammes MA, Knol-Blankevoort VT, Cruz LJ, Feitsma HRIJ, Mezzanotte L, Cordfunke RA, et al. Pre-clinical evaluation of a cyanine-based SPECT probe for multimodal tumor necrosis imaging. Mol Imaging Biol 2016;18:905-15.
111. Stammes MA, Maeda A, Bu J, Scollard DA, Kulbatski I, Medeiros PJ, et al. The necrosis-avid small molecule HQ4-DTPA as a multimodal imaging agent for monitoring radiation therapy-induced tumor cell death. Front Oncol 2016;6:221.
112. Sonin D, Papayan G, Pochkaeva E, Chefu S, Minasian S, Kurapeev D, et al. In vivo visualization and ex vivo quantification of experimental myocardial infarction by indocyanine green fluorescence imaging. Biomed Opt Express 2017;8:151-61.
113. Yamamoto T, Ikuta K, Oi K, Abe K, Uwatoku T, Hyodo F, et al. In vivo MR detection of vascular endothelial injury using a new class of MRI contrast agent. Bioorg Med Chem Lett 2004;14:2787-90.
114. Yasuda S, Ikuta K, Uwatoku T, Oi K, Abe K, Hyodo F, et al. In vivo magnetic resonance imaging of atherosclerotic lesions with a newly developed evans blue-DTPA-Gadolinium contrast medium in apolipoprotein-E-deficient mice. J Vasc Res 2008;45:123-8.
115. Al-Ejeh F, Staudacher AH, Smyth DR, Darby JM, Denoyer D, Tsopelas C, et al. Postchemotherapy and tumor-selective targeting with the La-specific DAB4 monoclonal antibody relates to apoptotic cell clearance. J Nucl Med 2014;55:772-9.
116. Wu DC, Ingram A, Lahti JH, Mazza B, Grenet J, Kapoor A, et al. Apoptotic release of histories from nucleosomes. J Biol Chem 2002;277:12001-8.
117. Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, et al. HMGB1 in health and disease. Mol Asp Med 2014;40:1-116.
118. Khawli LA, Hu P, Epstein AL. Multiple uses of tumor necrosis therapy (TNT) for the treatment and imaging of solid tumors:preclinical considerations and progress. Update Cancer Ther 2006;1:33-47.
119. Ni Y, Bormans G, Chen F, Verbruggen A, Marchal G. Necrosis avid contrast agents:functional similarity versus structural diversity. Invest Radiol 2005;40:526-35.
120. Ni Y. Metalloporphyrins and functional analogues as MRI contrast agents. Curr Med Imaging Rev 2008;4:96-112.
121. Epstein AL, Chen FM, Taylor CR. A novel method for the detection of necrotic lesions in human cancers. Cancer Res 1988;48:5842-8.
122. Miller GK, Naeve GS, Gaffar SA, Epstein AL. Immunologic and biochemical analysis of TNT-1 and TNT-2 monoclonal antibody binding to histones. Hybridoma 1993;12:689-98.
123. Anderson PM, Wiseman GA, Lewis BD, Charboneau JW, Dunn WL, Carpenter SP, et al. A phase I safety and imaging study using radiofrequency ablation (RFA) followed by 131I-chTNT-1/B radioimmunotherapy adjuvant treatment of hepatic metastases. Cancer Ther 2003;1:297-306.
124. Khawli LA, Mizokami MM, Sharifi J, Hu PS, Epstein AL. Pharmacokinetic characteristics and biodistribution of radioiodinated chimeric TNT-1,-2, and-3, monoclonal antibodies after chemical modification with biotin. Cancer Biother Radio 2002;17:359-70.
125. Sharifi J, Khawli LA, Hu P, King S, Epstein AL. Characterization of a phage display-derived human monoclonal antibody (NHS76) counterpart to chimeric TNT-1 directed against necrotic regions of solid tumors. Hybrid Hybridom 2001;20:305-12.
126. Hornick JL, Sharifi J, Khawli LA, Hu PS, Biela BH, Mizokami MM, et al. A new chemically modified chimeric TNT-3 monoclonal antibody directed against DNA for the radioimmunotherapy of solid tumors. Cancer Biother Radio 1998;13:255-68.
127. Zheng S, Xu H, Lu M, Yue D, Xie X, Liu G. Radiofrequency ablation before intratumoral injection of 131I-chTNT improves the tumor-to-normal tissue ratio in solid VX2 tumor. Cancer Biother Radiopharm 2013;28:725-30.
128. Jendzelovska Z, Jendzelovsky R, Kucharova B, Fedorocko P. Hypericin in the light and in the dark:two sides of the same coin. Front Plant Sci 2016;7:560.
129. Liu X, Jiang C, Li Y, Liu W, Yao N, Gao M, et al. Evaluation of hypericin:effect of aggregation on targeting biodistribution. J Pharm Sci 2015;104:215-22.
130. Chen Z, Lohr A, Saha-Moeller CR, Wuerthner F. Self-assembled pi-stacks of functional dyes in solution:structural and thermodynamic features. Chem Soc Rev 2009;38:564-84.
131. Chen Z, Fimmel B, Wuerthner F. Solvent and substituent effects on aggregation constants of perylene bisimide π-stacks-a linear free energy relationship analysis. Org Biomol Chem 2012;10:5845-55.
132. Yang Y, Ji S, Liu S. Impact of multiple negative charges on blood clearance and biodistribution characteristics of 99mTc-labeled dimeric cyclic RGD peptides. Bioconjugate Chem 2014;25:1720-9.
133. Haskali MB, Denoyer D, Noonan W, Culinane C, Rangger C, Pouliot N, et al. Sulfonation of tyrosine as a method to improve biodistribution of peptide-based radiotracers:novel 18F-labeled cyclic RGD analogues. Mol Pharm 2017;14:1169-80.
134. Chen Z, Baumeister U, Tschierske C, Wuerthner F. Effect of core twisting on self-assembly and optical properties of perylene bisimide dyes in solution and columnar liquid crystalline phases. Chem Eur J 2007;13:450-65.
135. Priebe W, Fokt I, Przewloka T, Chaires JB, Portugal J, Trent JO. Exploiting anthracycline scaffold for designing DNA-targeting agents. Method Enzymol 2001;340:529-55.
136. Strekowski L, Wilson B. Noncovalent interactions with DNA:an overview. Mutat Res-Fund Mol 2007;623:3-13.
137. Sun Y, Bi S, Song D, Qiao C, Mu D, Zhang H. Study on the interaction mechanism between DNA and the main active components in Scutellaria baicalensis Georgi. Sens Actuat B Chem 2008;129:799-810.
138. Hahn J-S. The Hsp90 chaperone machinery:from structure to drug development. BMB Rep 2009;42:623-30.
139. Goetz MP, Toft DO, Ames MM, Erlichman C. The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 2003;14:1169-76.
140. Dilda PJ, Hogg PJ. Arsenical-based cancer drugs. Cancer Treat Rev 2007;33:542-64.
141. Intine RV, Tenenbaum SA, Sakulich AL, Keene JD, Maraia RJ. Differential phosphorylation and subcellular localization of and La RNPs associated with precursor tRNAs and translation-related mRNAs. Mol Cell 2003;12:1301-7.
142. Al-Ejeh F, Darby JM, Brown MP. The La autoantigen is a malignancy-associated cell death target that is induced by DNAdamaging drugs. Clin Cancer Res 2007;13:5509S-18S.
143. Al-Ejeh F, Darby JM, Pensa K, Diener KR, Hayball JD, Brown MP. In vivo targeting of dead tumor cells in a murine tumor model using a monoclonal antibody specific for the La autoantigen. Clin Cancer Res 2007;13:5519S-27S.
144. Al Darwish R, Staudacher AH, Bezak E, Brown MP. Autoradiography imaging in targeted α therapy with timepix detector. Comput Math Method Med 2015;2015:Article ID 612580.
145. Penfold SN, Brown MP, Staudacher AH, Bezak E. Monte Carlo simulations of dose distributions with necrotic tumor targeted radioimmunotherapy. Appl Radiat Isot 2014;90:40-5.
146. Allam R, Kumar SVR, Darisipudi MN, Anders H-J. Extracellular histones in tissue injury and inflammation. J Mol Med 2014;92:465-72.
147. Chen R, Kang R, Fan XG, Tang D. Release and activity of histone in diseases. Cell Death Dis 2014;5:e1370.
148. Silk E, Zhao H, Weng H, Ma D. The role of extracellular histone in organ injury. Cell Death Dis 2017;8:e2812.
149. Kawai C, Kotani H, Miyao M, Ishida T, Jemail L, Abiru H, et al. Circulating extracellular histones are clinically relevant mediators of multiple organ injury. Am J Pathol 2016;186:829-43.
150. Lv X, Wen T, Song J, Xie D, Wu L, Jiang X, et al. Extracellular histones are clinically relevant mediators in the pathogenesis of acute respiratory distress syndrome. Resp Res 2017;18:165.
151. Yang R, Zou X, Tenhunen J, Tonnessen TI. HMGB1 and extracellular histones significantly contribute to systemic inflammation and multiple organ failure in acute liver failure. Mediat Inflamm 2017;2017:Article ID 5928078.
152. Khaw BA, Nakazawa A, Odonnell SM, Pak KY, Narula J. Avidity of technetium 99m glucarate for the necrotic myocardium:in vivo and in vitro assessment. J Nucl Cardiol 1997;4:283-90.
153. Yaoita H, Uehara T, Brownell AL, Rabito CA, Ahmad M, Khaw BA, et al. Localization of technetium-99m-glucarate in zones of acute cerebral injury. J Nucl Med 1991;32:272-8.
154. Perek N, Sabido O, Le Jeune N, Prevot N, Vergnon J-M, Clotagatide A, et al. Could 99mTc-glucarate be used to evaluate tumour necrosis?. Eur J Nucl Med Mol Imaging 2008;35:1290-8.
155. Choudhury PS, Savio E, Solanki KK, Alonso O, Gupta A, Gambini JP, et al. 99mTc Glucarate as a potential radiopharmaceutical agent for assessment of tumor viability:from bench to the bed side. World J Nucl Med 2012;11:47-56.
156. Huang H, Chen H-W, Evankovich J, Yan W, Rosborough BR, Nace GW, et al. Histones activate the NLRP3 inflammasome in kupffer cells during sterile inflammatory liver injury. J Immunol 2013;191:2665-79.
157. Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, et al. Circulating histones are mediators of trauma-associated lung injury. Am J Resp Crit Care 2013;187:160-9.
158. Bosmann M, Grailer JJ, Ruemmler R, Russkamp NF, Zetoune FS, Sarma JV, et al. Extracellular histones are essential effectors of C5aRand C5L2-mediated tissue damage and inflammation in acute lung injury. FASEB J 2013;27:5010-21.
159. Raucci A, Palumbo R, Bianchi ME. HMGB1:a signal of necrosis. Autoimmunity 2007;40:285-9.
160. Gauley J, Pisetsky DS. The translocation of HMGB1 during cell activation and cell death. Autoimmunity 2009;42:299-301.
161. Zitvogel L, Kepp O, Kroemer G. Decoding cell death dignals in inflammation and immunity. Cell 2010;140:798-804.
162. Chen Q, Guan X, Zuo X, Wang J, Yin W. The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases. Acta Pharm Sin B 2016;6:183-8.
163. Wang Y, Zhong J, Zhang X, Liu Z, Yang Y, Gong Q, et al. The role of HMGB1 in the pathogenesis of type 2 diabetes. J Diabetes Res 2016;2016:Article ID 2543268.
164. Angelopoulou E, Piperi C, Adamopoulos C, Papavassiliou AG. Pivotal role of high-mobility group box 1 (HMGB1) signaling pathways in glioma development and progression. J Mol Med 2016;94:867-74.
165. Wu H, Chen Z, Xie J, Kang L-N, Wang L, Xu B. High mobility group box-1:a missing link between diabetes and its complications. Mediat Inflamm 2016;2016:Article ID 3896147.
166. Wan W, Cao L, Khanabdali R, Kalionis B, Tai X, Xia S. The emerging role of HMGB1 in neuropathic pain:a potential therapeutic target for neuroinflammation. J Immunol Res 2016;2016:Article ID 6430423.
167. Ding J, Cui X, Liu Q. Emerging role of HMGB1 in lung diseases:friend or foe. J Cell Mol Med 2017;21:1046-57.
168. Austin Huy N, Detty SQ, Agrawal DK. Clinical implications of highmobility group box-1 (HMGB1) and the receptor for advanced glycation end-products (RAGE) in cutaneous malignancy:a systematic review. Anticancer Res 2017;37:1-7.
169. Yamamoto T, Tajima Y. HMGB1 is a promising therapeutic target for acute liver failure. Exp Rev Gastroenterol Hepatol 2017;11:673-82.
170. Tian X, Liu C, Shu Z, Chen G. Review:therapeutic targeting of HMGB1 in stroke. Curr Drug Deliv 2017;14:785-90.
171. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PEZ, Harzstark AL, Ferrone M, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized[1-13C]pyruvate. Sci Transl Med 2013;5:198ra108.
172. Cunningham CH, Lau JYC, Chen AP, Geraghty BJ, Perks WJ, Roifman I, et al. Hyperpolarized 13C metabolic MRI of the human heart initial experience. Circ Res 2016;119:1177-82.
173. Ji Y, Zhan Y, Jiang C, Jiang X, Gao M, Liu W, et al. Improvement of solubility and targetability of radioiodinated hypericin by using sodium cholate based solvent in rat models of necrosis. J Drug Target 2014;22:304-12.
174. Cona MM, Feng Y, Zhang J, Li Y, Verbruggen A, Oyen R, et al. Sodium cholate, a solubilizing agent for the necrosis avid radioiodinated hypericin in rabbits with acute myocardial infarction. Drug Deliv 2015;22:427-35.
175. Cona MM, Alpizar YA, Li J, Bauwens M, Feng Y, Sun Z, et al. Radioiodinated hypericin:its biodistribution, necrosis avidity and therapeutic efficacy are influenced by formulation. Pharm Res 2014;31:278-90.
176. Ishikawa M, Hashimoto Y. Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry. J Med Chem 2011;54:1539-54.
177. Lewin G, Maciuk A, Moncomble A, Cornard J-P. Enhancement of the water solubility of flavone glycosides by disruption of molecular planarity of the aglycone moiety. J Nat Prod 2013;76:8-12.
178. Zhang D, Jiang C, Yang S, Gao M, Huang D, Wang X, et al. Effects of skeleton structure on necrosis targeting and clearance properties of radioiodinated dianthrones. J Drug Target 2016;24:566-77.
179. Feng Y, Chen F, Ma Z, Dekeyzer F, Yu J, Xie Y, et al. Towards stratifying ischemic components by cardiac MRI and multifunctional stainings in a rabbit model of myocardial infarction. Theranostics 2013;4:24-35.
180. Yao L, Xue X, Yu P, Ni Y, Chen F. Evans blue dye:a revisit of its applications in biomedicine. Contrast Media Mol Imaging 2018;2018:Article ID 7628037.
181. Jin Q, Shan X, Luo Q, Zhang D, Zhao Y, Yao N, et al. 131I-Evans blue:evaluation of necrosis targeting property and preliminary assessment of the mechanism in animal models. Acta Pharm Sin B 2018;8:390-400.