Reviews
Jian Yang, Xinli Liu, Yunzhi Fu, Yujun Song. Recent advances of microneedles for biomedical applications: drug delivery and beyond[J]. Acta Pharmaceutica Sinica B, 2019, 9(3): 469-483

Recent advances of microneedles for biomedical applications: drug delivery and beyond
Jian Yanga, Xinli Liub, Yunzhi Fua, Yujun Songb
a College of Materials Science and Chemical Engineering, Hainan University, Haikou 570228, China;
b College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
Abstract:
The microneedle (MN), a highly efficient and versatile device, has attracted extensive scientific and industrial interests in the past decades due to prominent properties including painless penetration, low cost, excellent therapeutic efficacy, and relative safety. The robust microneedle enabling transdermal delivery has a paramount potential to create advanced functional devices with superior nature for biomedical applications. In this review, a great effort has been made to summarize the advance of microneedles including their materials and latest fabrication method, such as three-dimensional printing (3DP). Importantly, a variety of representative biomedical applications of microneedles such as disease treatment, immunobiological administration, disease diagnosis and cosmetic field, are highlighted in detail. At last, conclusions and future perspectives for development of advanced microneedles in biomedical fields have been discussed systematically. Taken together, as an emerging tool, microneedles have showed profound promise for biomedical applications.
Key words:    Microneedle patches    Biomedical applications    Microfabricated device    Drug delivery    Disease treatment    Disease diagnosis    Immunobiological administration    3D printing   
Received: 2018-11-27     Revised:
DOI: 10.1016/j.apsb.2019.03.007
Funds: This work was financially supported by the National Natural Science Foundation of China (Grants Nos. 21874066, 81601632 and 21563009, China) and the Natural Science Foundation of Jiangsu Province (BK20160616, China), the Fundamental Research Funds for Central Universities (China), the Shuangchuang Program of Jiangsu Province (China), and Thousand Talents Program for Young Researchers (China).
Corresponding author: Yunzhi Fu, Yujun Song     Email:yzhfu@hainu.edu.cn;ysong@nju.edu.cn
Author description:
Service
PDF(KB) Free
Print
0
Authors
Jian Yang
Xinli Liu
Yunzhi Fu
Yujun Song

References:
1. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 2004;3:115-24.
2. Wang JS, Hung YJ, Lu YC, Tsai CL, Yang WS, Lee TI, et al. Difference between observed and predicted glycated hemoglobin at baseline and treatment response to vildagliptin-based dual oral therapy in patients with type 2 diabetes. Diabetes Res Clin Pract 2018;138:119-27.
3. Shakya P, Madhav NV, Shakya AK, Singh K. Palatal mucosa as a route for systemic drug delivery:a review. J Control Release 2011; 151:2-9.
4. Del Río-Sancho S, Serna-Jiménez CE, Sebastián-Morelló M, Calatayud-Pascual MA, Balaguer-Fernández C, Femenı á-Font A, et al. Transdermal therapeutic systems for memantine delivery. Comparison of passive and iontophoretic transport. Int J Pharm 2017;517:104-11.
5. Mitragotri S, Kost J. Low-frequency sonophoresis:a review. Adv Drug Deliv Rev 2004;56:589-601.
6. Denet AR, Vanbever R, Pre át V. Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev 2004;56:659-74.
7. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 2004;56:675-711.
8. Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release 2007;117:227-37.
9. He H, Lu Y, Qi J, Zhao W, Dong X, Wu W. Biomimetic thiamineand niacin-decorated liposomes for enhanced oral delivery of insulin. Acta Pharm Sin B 2018;8:97-105.
10. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012;64:1547-68.
11. Nir Y, Paz A, Sabo E, Potasman I. Fear of injections in young adults:prevalence and associations. Am J Trop Med Hyg 2003;68:341-4.
12. Hamilton JG. Needle phobia:a neglected diagnosis. J Fam Pract 1995;41:169-75.
13. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 2004;56:581-7.
14. Zhang Q, Xu C, Lin S, Zhou H, Yao G, Liu H, et al. Synergistic immunoreaction of acupuncture-like dissolving microneedles containing thymopentin at acupoints in immune-suppressed rats. Acta Pharm Sin B 2018;8:449-57.
15. Ma X, Song Q, Gao X. Reconstituted high-density lipoproteins:novel biomimetic nanocarriers for drug delivery. Acta Pharm Sin B 2018;8:51-63.
16. Thomas BJ, Finnin BC. The transdermal revolution. Drug Discov Today 2004;9:697-703.
17. Hegde NR, Kaveri SV, Bayry J. Recent advances in the administration of vaccines for infectious diseases:microneedles as painless delivery devices for mass vaccination. Drug Discov Today 2011;16:1061-8.
18. Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008;29:2113-24.
19. Jain AK, Lee CH, Gill HS. 5-Aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors. J Control Release 2016;239:72-81.
20. Chen G, Hao B, Ju D, Liu M, Zhao H, Du Z, et al. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta Pharm Sin B 2015;5:569-76.
21. Gardeniers HJ, Luttge R, Berenschot EJ, de Boer MJ, Yeshurun SY, Hefetz M, et al. Silicon micromachined hollow microneedles for transdermal liquid transport. J Microelectromech Syst 2003;12:855-62.
22. Zhang S, Qiu Y, Gao Y. Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment. Acta Pharm Sin B 2014;4:100-4.
23. Tai W, Mo R, Di J, Subramanian V, Gu X, Buse JB, et al. Bioinspired synthetic nanovesicles for glucose-responsive release of insulin. Biomacromolecules 2014;15:3495-502.
24. Song Y, Zhang Y, Bernard PE, Reuben JM, Ueno NT, Arlinghaus RB, et al. Multiplexed volumetric bar-chart chip for point-of-care diagnostics. Nat Commun 2012;3:1283.
25. Chen W, Tian R, Xu C, Yung BC, Wang G, Liu Y, et al. Microneedlearray patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nat Commun 2017;8:1777.
26. Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 2016;11:566-72.
27. Song Y, Huang YY, Liu X, Zhang X, Ferrari M, Qin L. Point-of-care technologies for molecular diagnostics using a drop of blood. Trends Biotechnol 2014;32:132-9.
28. Than A, Liang K, Xu S, Sun L, Duan H, Xi F, et al. Transdermal delivery of anti-obesity compounds to subcutaneous adipose tissue with polymeric microneedle patches. Small Methods 2017;1:1700269.
29. Song Y, Wang Y, Qi W, Li Y, Xuan J, Wang P, et al. Integrative volumetric bar-chart chip for rapid and quantitative point-of-care detection of myocardial infarction biomarkers. Lab Chip 2016;16:2955-62.
30. Ye Y, Wang J, Hu Q, Hochu GM, Xin H, Wang C, et al. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano 2016; 10:8956-63.
31. Chang H, Zheng M, Yu X, Than A, Seeni RZ, Kang R, et al. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv Mater 2017;29:1702243.
32. Yu J, Zhang Y, Ye Y, DiSanto R, Sun W, Ranson D, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci U S A 2015;112:8260-5.
33. Xie Y, Xu B, Gao Y. Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomedicine 2005;1:184-90.
34. Kim JY, Han MR, Kim YH, Shin SW, Nam SY, Park JH. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer's disease. Eur J Pharm Biopharm 2016;105:148-55.
35. Zhang Y, Liu Q, Yu J, Yu S, Wang J, Qiang L, et al. Locally induced adipose tissue browning by microneedle patch for obesity treatment. ACS Nano 2017;11:9223-30.
36. Donnelly RF, Larrañeta E. Microarray patches:potentially useful delivery systems for long-acting nanosuspensions. Drug Discov Today 2018;23:1026-33.
37. Ito Y, Yoshimitsu JI, Shiroyama K, Sugioka N, Takada K. Self-dissolving microneedles for the percutaneous absorption of EPO in mice. J Drug Target 2006;14:255-61.
38. Blagus T, Markelc B, Cemazar M, et al. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery. J Control Release 2013;172:862-71.
39. Li WZ, Huo MR, Zhou JP, Zhou YQ, Hao BH, Liu T, et al. Supershort solid silicon microneedles for transdermal drug delivery applications. Int J Pharm 2010;389:122-9.
40. Kim K, Park DS, Lu HM, Che W, Kim K, Lee JB, et al. A tapered hollow metallic microneedle array using backside exposure of SU-8. J Micromech Microeng 2004;14:597-603.
41. Yoon YK, Park JH, Allen MG. Multidirectional uv lithography for complex 3-D mems structures. J Microelectromech Syst 2006;15:1121-30.
42. Lim SH, Ng JY, Kang L. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger. Biofabrication 2017;9:015010.
43. Gill HS, Prausnitz MR. Coating formulations for microneedles. Pharm Res 2007;24:1369-80.
44. DeMuth PC, Su X, Samuel RE, Hammond PT, Irvine DJ. Nanolayered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv Mater 2010;22:4851-6.
45. Zhang Y, Brown K, Siebenaler K, Determan A, Dohmeier D, Hansen K. Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action. Pharm Res 2012;29:170-7.
46. Prow TW, Chen X, Prow NA, Fernando GJ, Tan CS, Raphael AP, et al. Nanopatch-targeted skin vaccination against West Nile virus and Chikungunya virus in mice. Small 2010;6:1776-84.
47. Chen X, Prow TW, Crichton ML, Jenkins DW, Roberts MS, Frazer IH, et al. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J Control Release 2009;139:212-20.
48. Chen X, Kask AS, Crichton ML, McNeilly C, Yukiko S, Dong L, et al. Improved DNA vaccination by skin-targeted delivery using drycoated densely-packed microprojection arrays. J Control Release 2010;148:327-33.
49. Pere CP, Economidou SN, Lall G, Ziraud C, Boateng JS, Alexander BD, et al. 3D printed microneedles for insulin skin delivery. Int J Pharm 2018;544:425-32.
50. Gratieri T, Alberti I, Lapteva M, Kalia YN. Next generation intraand transdermal therapeutic systems:using non-and minimallyinvasive technologies to increase drug delivery into and across the skin. Eur J Pharm Sci 2013;50:609-22.
51. Donnelly RF, Majithiya R, Singh TR, Morrow DI, Garland MJ, Demir YK, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res 2011;28:41-57.
52. Martin CJ, Allender CJ, Brain KR, Morrissey A, Birchall JC. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J Control Release 2012; 158:93-101.
53. Sullivan SP, Murthy N, Prausnitz MR. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater 2008;20:933-8.
54. Min J, Park JH, Yoon HH, Choy YB. Ultrasonic welding method to fabricate polymer microstructure encapsulating protein with minimum damage. Macromol Res 2008;16:570-3.
55. Luzuriaga MA, Berry DR, Reagan JC, Smaldone RA, Gassensmith JJ. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip 2018;18:1223-30.
56. Ito Y, Hagiwara E, Saeki A, Sugioka N, Takada K. Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci 2006;29:82-8.
57. Yu LM, Tay FE, Guo DG, Xu L, Yap KL. A microfabricated electrode with hollow microneedles for ECG measurement. Sensor Actuat A Phys 2009;151:17-22.
58. Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise microinjection into skin using hollow microneedles. J Invest Dermatol 2006;126:1080-7.
59. Moon SJ, Lee SS, Lee HS, Kwon TH. Fabrication of microneedle array using LIGA and hot embossing process. Microsyst Technol 2005;11:311-8.
60. Miller PR, Xiao X, Brener I, Burckel DB, Narayan R, Polsky R. Microneedle-based transdermal sensor for on-chip potentiometric determination of K+. Adv Healthc Mater 2014;3:876-81.
61. Bhatnagar S, Dave K, Venuganti VV. Microneedles in the clinic. J Control Release 2017;260:164-82.
62. Chen Z, Lin Y, Lee W, Ren L, Liu B, Liang L, et al. Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl Mater Interfaces 2018;10:29338-46.
63. Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, et al. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 2018;128:3-28.
64. Lim DJ, Vines JB, Park H, Lee SH. Microneedles:a versatile strategy for transdermal delivery of biological molecules. Int J Biol Macromol 2018;110:30-8.
65. McAllister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles:fabrication methods and transport studies. Proc Natl Acad Sci U S A 2003;100:13755-60.
66. Indermun S, Luttge R, Choonara YE, Kumar P, du Toit LC, Modi G, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release 2014;185:130-8.
67. Lambert PH, Laurent PE. Intradermal vaccine delivery:will new delivery systems transform vaccine administration? Vaccine 2008;26:3197-208.
68. Teo AL, Shearwood C, Ng KC, Lu J, Moochhala S. Transdermal microneedles for drug delivery applications. Mater Sci Eng B 2006; 132:151-4.
69. Escobar-Chávez JJ, Bonilla-Martínez D, Angélica M, VillegasGonzález M, Molina-Trinidad E, Casas-Alancaster N, et al. Microneedles:a valuable physical enhancer to increase transdermal drug delivery. J Clin Pharmacol 2011;51:964-77.
70. Hu Q, Sun W, Lu Y, Bomba HN, Ye Y, Jiang T, et al. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Lett 2016;16:1118-26.
71. Dong L, Li Y, Li Z, Xu N, Liu P, Du H, et al. Au nanocagestrengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Appl Mater Interfaces 2018;10:9247-56.
72. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade:a common denominator approach to cancer therapy. Cancer Cell 2015;27:450-61.
73. Jeanbart L, Swartz MA. Engineering opportunities in cancer immunotherapy. Proc Natl Acad Sci U S A 2015;112:14467-72.
74. Chen MC, Lin ZW, Ling MH. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano 2016;10:93-101.
75. van der Maaden K, Heuts J, Camps M, Pontier M, van Scheltinga AT, Jiskoot W, et al. Hollow microneedle-mediated micro-injections of a liposomal HPV E743-63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J Control Release 2018;269:347-54.
76. Tang T, Deng Y, Chen J, Zhao Y, Yue R, Choy KW, et al. Local administration of siRNA through microneedle:optimization, biodistribution, tumor suppression and toxicity. Sci Rep 2016;6:30430.
77. Ali AA, McCrudden CM, McCaffrey J, McBride JW, Cole G, Dunne NJ, et al. DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles. Nanomedicine 2017;13:921-32.
78. Hou GY, Men LH, Wang L, Zheng Z, Liu ZQ, Song FR, et al. Quantitative analysis of urinary endogenous markers for the treatment effect of Radix Scutellariae on type 2 diabetes rats. Chin Chem Lett 2017;28:1214-9.
79. Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes:is beige the new brown? Genes Dev 2013;27:234-50.
80. Yoneshiro T, Matsushita M, Nakae S, Kameya T, Sugie H, Tanaka S, et al. Brown adipose tissue is involved in the seasonal variation of cold-induced thermogenesis in humans. Am J Physiol Regul Integr Comp Physiol 2016;310:R999-1009.
81. Barquissau V, Léger B, Beuzelin D, Martins F, Amri EZ, Pisani DF, et al. Caloric restriction and diet-induced weight loss do not induce browning of human subcutaneous white adipose tissue in women and men with obesity. Cell Rep 2018;22:1079-89.
82. Zheng G, Sayama K, Okubo T, Juneja LR, Oguni I. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo 2004;18:55-62.
83. Dangol M, Kim S, Li CG, Lahiji SF, Jang M, Ma Y, et al. Antiobesity effect of a novel caffeine-loaded dissolving microneedle patch in high-fat diet-induced obese C57BL/6J mice. J Control Release 2017;265:41-7.
84. Tariot P, Salloway S, Yardley J, Mackell J, Moline M. Long-term safety and tolerability of donepezil 23 mg in patients with moderate to severe Alzheimer's disease. BMC Res Notes 2012;5:283.
85. Baron R. Mechanisms of disease:neuropathic pain-a clinical perspective. Nat Clin Pract Neuroll 2006;2:95-108.
86. Xie X, Pascual C, Lieu C, Oh S, Wang J, Zou B, et al. Analgesic microneedle patch for neuropathic pain therapy. ACS Nano 2017;11:395-406.
87. Lawn JE, Cousens S, Zupan J. 4 million neonatal deaths:when? where? why? Lancet 2005;365:891-900.
88. Darmstadt GL, Batra M, Zaidi AK. Parenteral antibiotics for the treatment of serious neonatal bacterial infections in developing country settings. Pediatr Infect Dis J 2009;28 1 Suppl:S37-42.
89. González-Vázquez P, Larrañeta E, McCrudden MT, Jarrahian C, Rein-Weston A, Quintanar-Solares M, et al. Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis. J Control Release 2017;265:30-40.
90. Tas C, Joyce JC, Nguyen HX, Eangoor P, Knaack JS, Banga AK, et al. Dihydroergotamine mesylate-loaded dissolving microneedle patch made of polyvinylpyrrolidone for management of acute migraine therapy. J Control Release 2017;268:159-65.
91. Than A, Liu C, Chang H, Duong PK, Cheung CM, Xu C, et al. Selfimplantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nat Commun 2018;9:4433.
92. Zhou Z, Lin H, Li C, Wu Z. Recent progress of fully synthetic carbohydrate-based vaccine using TLR agonist as build-in adjuvant. Chin Chem Lett 2018;29:19-26.
93. Moffatt K, Wang Y, Singh TR, Donnelly RF. Microneedles for enhanced transdermal and intraocular drug delivery. Curr Opin Pharmacol 2017;36:14-21.
94. Hirschberg HJ, van de Wijdeven GG, Kraan H, Amorij JP, Kersten GF. Bioneedles as alternative delivery system for hepatitis B vaccine. J Control Release 2010;147:211-7.
95. Ding Z, Verbaan FJ, Bivas-Benita M, Bungener L, Huckriede A, van den Berg DJ, et al. Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control Release 2009;136:71-8.
96. Li G, Badkar A, Nema S, Kolli CS, Banga AK. In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int J Pharm 2009;368:109-15.
97. Sullivan SP, Koutsonanos DG, del Pilar Martin M, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med 2010;16:915-20.
98. Raphael AP, Crichton ML, Falconer RJ, Meliga S, Chen X, Fernando GJ, et al. Formulations for microprojection/microneedle vaccine delivery:structure, strength and release profiles. J Control Release 2016;225:40-52.
99. Du G, Hathout RM, Nasr M, Nejadnik MR, Tu J, Koning RI, et al. Intradermal vaccination with hollow microneedles:a comparative study of various protein antigen and adjuvant encapsulated nanoparticles. J Control Release 2017;266:109-18.
100. De Groot AM, Platteel AC, Kuijt N, van Kooten PJ, Vos PJ, Sijts AJ, et al. Nanoporous microneedle arrays effectively induce antibody responses against diphtheria and tetanus toxoid. Front Immunol 2017; 8:1789.
101. Poirier D, Renaud F, Dewar V, Strodiot L, Wauters F, Janimak J, et al. Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable. Biomaterials 2017;145:256-65.
102. Chen F, Yan Q, Yu Y, Wu MX, et al. BCG vaccine powder-laden and dissolvable microneedle arrays for lesion-free vaccination. J Control Release 2017;255:36-44.
103. Arya JM, Dewitt K, Scott-Garrard M, Chiang YW, Prausnitz MR. Rabies vaccination in dogs using a dissolving microneedle patch. J Control Release 2016;239:19-26.
104. Littauer EQ, Mills LK, Brock N, Esser ES, Romanyuk A, PulitPenaloza JA, et al. Stable incorporation of GM-CSF into dissolvable microneedle patch improves skin vaccination against influenza. J Control Release 2018;276:1-16.
105. Pamornpathomkul B, Niyomtham N, Yingyongnarongkul BE, Prasitpuriprecha C, Rojanarata T, Ngawhirunpat T, et al. Cationic niosomes for enhanced skin immunization of plasmid DNA-encoding ovalbumin via hollow microneedles. AAPS PharmSciTech 2018;19:481-8.
106. Wang PM, Cornwell M, Prausnitz MR. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol Ther 2005;7:131-41.
107. Amaral J, Pinto V, Costa T, Gaspar J, Ferreira R, Paz E, et al. Integration of TMR sensors in silicon microneedles for magnetic measurements of neurons. IEEE Trans Magn 2013;49:3512-5.
108. Mandal A, Boopathy AV, Lam LK, Moynihan KD, Welch ME, Bennett NR, et al. Cell and fluid sampling microneedle patches for monitoring skin-resident immunity. Sci Transl Med 2018;10:eaar2227.
109. Mohan AM, Windmiller JR, Mishra RK, Wang J. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens Bioelectron 2017;91:574-9.
110. Ranamukhaarachchi SA, Padeste C, Häfeli UO, Stoeber B, Cadarso VJ. Design considerations of a hollow microneedleoptofluidic biosensing platform incorporating enzyme-linked assays. J Micromech Microeng 2017;28:024002.
111. Ciui B, Martin A, Mishra RK, Brunetti B, Nakagawa T, Dawkins TJ, et al. Wearable wireless tyrosinase bandage and microneedle sensors:toward melanoma screening. Adv Healthc Mater 2018;7:1701264.
112. Fabbrocini G, De Vita V, Monfrecola A, De Padova MP, Brazzini B, Teixeira F, et al. Percutaneous collagen induction:an effective and safe treatment for post-acne scarring in different skin phototypes. J Dermatol Treat 2014;25:147-52.
113. Cachafeiro T, Escobar G, Maldonado G, Cestari T, Corleta O. Comparison of nonablative fractional erbium laser 1,340 nm and microneedling for the treatment of atrophic acne scars:a randomized clinical trial. Dermatol Surg 2016;42:232-41.
114. Kim M, Yang H, Kim H, Jung H, Jung H. Novel cosmetic patches for wrinkle improvement:retinyl retinoate-and ascorbic acid-loaded dissolving microneedles. Int J Cosmet Sci 2014;36:207-12.
115. Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Annu Rev Chem Biomol Eng 2017;8:177-200.
116. Park KY, Kwon HJ, Lee C, Kim D, Yoon JJ, Kim MN, et al. Efficacy and safety of a new microneedle patch for skin brightening:a randomized, split-face, single-blind study. J Cosmet Dermatol 2017;16:382-7.
117. Park JH, Choi SO, Seo S, Choy YB, Prausnitz MR. A microneedle roller for transdermal drug delivery. Eur J Pharm Biopharm 2010;76:282-9.
118. Coulman SA, Birchall JC, Alex A, Pearton M, Hofer B, O'Mahony C, et al. In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography. Pharm Res 2011;28:66-81.