Original articles
Jiyu Zhou, Ningning Huang, Yitong Guo, Shuang Cui, Chaoliang Ge, Qingxian He, Xiaojie Pan, Guangji Wang, Hong Wang, Haiping Hao. Combined obeticholic acid and apoptosis inhibitor treatment alleviates liver fibrosis[J]. Acta Pharmaceutica Sinica B, 2019, 9(3): 526-536

Combined obeticholic acid and apoptosis inhibitor treatment alleviates liver fibrosis
Jiyu Zhoua, Ningning Huanga, Yitong Guoa, Shuang Cuia, Chaoliang Gea,b, Qingxian Hea, Xiaojie Pana, Guangji Wanga, Hong Wanga, Haiping Haoa
a State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China;
b First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
Obeticholic acid (OCA), the first FXR-targeting drug, has been claimed effective in the therapy of liver fibrosis. However, recent clinical trials indicated that OCA might not be effective against liver fibrosis, possibly due to the lower dosage to reduce the incidence of the side-effect of pruritus. Here we propose a combinatory therapeutic strategy of OCA and apoptosis inhibitor for combating against liver fibrosis. CCl4-injured mice, D-galactosamine/LPS (GalN/LPS)-treated mice and cycloheximide/TNFα (CHX/TNFα)-treated HepG2 cells were employed to assess the effects of OCA, or together with IDN-6556, an apoptosis inhibitor. OCA treatment significantly inhibited hepatic stellate cell (HSC) activation/proliferation and prevented fibrosis. Elevated bile acid (BA) levels and hepatocyte apoptosis triggered the activation and proliferation of HSCs. OCA treatment reduced BA levels but could not inhibit hepatocellular apoptosis. An enhanced anti-fibrotic effect was observed when OCA was co-administrated with IDN-6556. Our study demonstrated that OCA inhibits HSCs activation/proliferation partially by regulating BA homeostasis and thereby inhibiting activation of HSCs. The findings in this study suggest that combined use of apoptosis inhibitor and OCA at lower dosage represents a novel therapeutic strategy for liver fibrosis.
Key words:    Obeticholic acid    Liver fibrosis    Bile acid    Hepatocellular apoptosis    IDN-6556    Farnesoid X receptor    Hepatic stellate cell   
Received: 2018-08-25     Revised:
DOI: 10.1016/j.apsb.2018.11.004
Funds: This research was supported by National Natural Science Foundation of China (grants 81430091, 81720108032, 81421005, 91429308 and 81603194); the Project for Major New Drug Innovation and Development (grant 2015ZX09501010 and 2017ZX09101003-002-003, China); and Overseas Expertise Introduction Project for Discipline Innovation (G20582017001, China); "Double First Class" Initiative Project (CPU2018GF01 and CPU2018GF09, China); State Key Laboratory of Natural Medicines at China Pharmaceutical University (SKLNMZZCX201610 and SKLNMZZCX201801, China) and China Postdoctoral Science Foundation (grants 2016M600455 and 2017T100423).
Corresponding author: Guangji Wang, Hong Wang, Haiping Hao     Email:gjwang@cpu.edu.cn;wanghong@cpu.edu.cn;haipinghao@cpu.edu.cn
Author description:
PDF(KB) Free
Jiyu Zhou
Ningning Huang
Yitong Guo
Shuang Cui
Chaoliang Ge
Qingxian He
Xiaojie Pan
Guangji Wang
Hong Wang
Haiping Hao

1. Peng L, Piekos S, Guo GL, Zhong XB. Role of farnesoid X receptor in establishment of ontogeny of phase-I drug metabolizing enzyme genes in mouse liver. Acta Pharm Sin B 2016;6:453-9.
2. Xie Y, Wang H, Cheng X, Wu Y, Cao L, Wu M, et al. Farnesoid X receptor activation promotes cell proliferation via PDK4-controlled metabolic reprogramming. Sci Rep 2016;6:18751.
3. Hao H, Cao L, Jiang C, Che Y, Zhang S, Takahashi S, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. Cell Metab 2017;25:856-67.
4. Zhu Y, Liu H, Zhang M, Guo GL. Fatty liver diseases, bile acids, and FXR. Acta Pharm Sin B 2016;6:409-12.
5. Ding L, Yang L, Wang Z, Huang W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B 2015;5:135-44.
6. Wang H, Zhao Z, Zhou J, Guo Y, Wang G, Hao H, et al. A novel intestinal-restricted FXR agonist. Bioorg Med Chem Lett 2017;27:3386-90.
7. Sepe V, Distrutti E, Fiorucci S, Zampella A. Farnesoid X receptor modulators 2014-present:a patent review. Expert Opin Ther Pat 2018;28:351-64.
8. Wang H, He Q, Wang G, Xu X, Hao H. FXR modulators for enterohepatic and metabolic diseases. Expert Opin Ther Pat 2018;28:765-82.
9. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT):a multicentre, randomised, placebo-controlled trial. Lancet 2015;385:956-65.
10. Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC, Mayo M, et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 2015;148:751-61.
11. Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med 2016;375:631-43.
12. Fiorucci S, Antonelli E, Rizzo G, Renga B, Mencarelli A, Riccardi L, et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 2004;127:1497-512.
13. Fiorucci S, Rizzo G, Antonelli E, Renga B, Mencarelli A, Riccardi L, et al. A farnesoid X receptor-small heterodimer partner regulatory cascade modulates tissue metalloproteinase inhibitor-1 and matrix metalloprotease expression in hepatic stellate cells and promotes resolution of liver fibrosis. J Pharmacol Exp Ther 2005;314:584-95.
14. Fickert P, Fuchsbichler A, Moustafa T, Wagner M, Zollner G, Halilbasic E, et al. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. Am J Pathol 2009;175:2392-405.
15. Zhang J, Gupte J, Gong Y, Weiszmann J, Zhang Y, Lee KJ, et al. Chronic over-expression of fibroblast growth factor 21 increases bile acid biosynthesis by opposing FGF15/19 action. EBioMedicine 2017;15:173-83.
16. Xiao Y, Yan W, Lu Y, Zhou K, Cai W. Neurotensin contributes to pediatric intestinal failure-associated liver disease via regulating intestinal bile acids uptake. EBioMedicine 2018;35:133-41.
17. Golubeva AV, Joyce SA, Moloney G, Burokas A, Sherwin E, Arboleya S, et al. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 2017;24:166-78.
18. Wang X, Xie G, Zhao A, Zheng X, Huang F, Wang Y, et al. Serum bile acids are associated with pathological progression of hepatitis Binduced cirrhosis. J Proteome Res 2016;15:1126-34.
19. Shlomai A, Halfon P, Goldiner I, Zelber-Sagi S, Halpern Z, Oren R, et al. Serum bile acid levels as a predictor for the severity of liver fibrosis in patients with chronic hepatitis C. J Viral Hepat 2013;20:95-102.
20. Wang H, Ge C, Zhou J, Guo Y, Cui S, Huang N, et al. Noncanonical farnesoid X receptor signaling inhibits apoptosis and impedes liver fibrosis. EBioMedicine 2018. Available from:https://doi.org/10.1016/j.ebiom.2018.10.028.
21. Li F, Miao L, Sun H, Zhang Y, Bao X, Zhang D. Establishment of a new acute-on-chronic liver failure model. Acta Pharm Sin B 2017;7:326-33.
22. Hill DB, Schmidt J, Shedlofsky SI, Cohen DA, McClain CJ. In vitro tumor necrosis factor cytotoxicity in Hep G2 liver cells. Hepatology 1995;21:1114-9.
23. Zhou X, Cao L, Jiang C, Xie Y, Cheng X, Krausz KW, et al. PPARα-UGT axis activation represses intestinal FXR-FGF15 feedback signalling and exacerbates experimental colitis. Nat Commun 2014;5:4573.
24. Wang H, Yan T, Xie Y, Zhao M, Che Y, Zhang J, et al. Mechanism-based inhibitory and peroxisome proliferator-activated receptor alpha-dependent modulating effects of silybin on principal hepatic drug-metabolizing enzymes. Drug Metab Dispos 2015;43:444-54.
25. Pockros PJ, Schiff ER, Shiffman ML, McHutchison JG, Gish RG, Afdhal NH, et al. Oral IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis C. Hepatology 2007;46:324-9.
26. Wang X, Wu X, Zhang A, Wang S, Hu C, Chen W, et al. Targeting the PDGF-B/PDGFR-β interface with destruxin A5 to selectively block PDGF-BB/PDGFR-ββ signaling and attenuate liver fibrosis. EBioMedicine 2016;7:146-56.
27. Weng SY, Wang XY, Vijayan S, Tang YL, Kim YO, Padberg K, et al. IL-4 receptor alpha signaling through macrophages differentially regulates liver fibrosis progression and reversal. Ebiomedicine 2018;29:92-103.
28. Huang C, Zhang H, Bai R. Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis. Acta Pharm Sin B 2017;7:447-52.
29. Hatting M, Zhao G, Schumacher F, Sellge G, Al Masaoudi M, Gassler N, et al. Hepatocyte caspase-8 is an essential modulator of steatohepatitis in rodents. Hepatology 2013;57:2189-201.
30. Eguchi A, De Mollerat Du Jeu X, Johnson CD, Nektaria A, Feldstein AE. Liver Bid suppression for treatment of fibrosis associated with non-alcoholic steatohepatitis. J Hepatol 2016;64:699-707.
31. Ratziu V, Sheikh MY, Sanyal AJ, Lim JK, Conjeevaram H, Chalasani N, et al. A phase 2, randomized, double-blind, placebo-controlled study of GS-9450 in subjects with nonalcoholic steatohepatitis. Hepatology 2012;55:419-28.
32. Anstee QM, Concas D, Kudo H, Levene A, Pollard J, Charlton P, et al. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J Hepatol 2010;53:542-50.
33. Zhang YX, Xu NY, Xu J, Kong B, Copple B, Guo GL, et al. E2F1 is a novel fibrogenic gene that regulates cholestatic liver fibrosis through the Egr-1/SHP/EID1 network. Hepatology 2014;60:919-30.
34. Verbeke L, Farre R, Trebicka J, Komuta M, Roskams T, Klein S, et al. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology. 2014;59:2286-98.
35. Li J, Zhang Y, Kuruba R, Gao X, Gandhi CR, Xie W, et al. Roles of microRNA-29a in the antifibrotic effect of farnesoid X receptor in hepatic stellate cells. Mol Pharmacol 2011;80:191-200.
36. Mishra A, Upadhyay PK, Nagarajan P. Immunotherapy in liver diseases:a balance between immunity and tolerance. Curr Drug Metab 2016;17:997-1005.
37. Verbeke L, Mannaerts I, Schierwagen R, Govaere O, Klein S, Vander Elst I, et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci Rep 2016;6:33453.
38. Wang YD, Yang F, Chen WD, Huang X, Lai L, Forman BM, et al. Farnesoid X receptor protects liver cells from apoptosis induced by serum deprivation in vitro and fasting in vivo. Mol Endocrinol 2008;22:1622-32.
39. Baskin-Bey ES, Washburn K, Feng S, Oltersdorf T, Shapiro D, Huyghe M, et al. Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury. Am J Transplant 2007;7:218-25.
40. Thomas H. Therapy:obeticholic acid for PBC. Nat Rev Gastroenterol Hepatol 2016;13:558-9.
Similar articles:
1.Yan Zhu, Hongxia Liu, Min Zhang, Grace L. Guo.Fatty liver diseases, bile acids, and FXR[J]. Acta Pharmaceutica Sinica B, 2016,6(5): 409-412
2.Guodong Li, Grace L. Guo.Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration[J]. Acta Pharmaceutica Sinica B, 2015,5(2): 93-98
3.Sharon Manley, Wenxing Ding.Role of farnesoid X receptor and bile acids in alcoholic liver disease[J]. Acta Pharmaceutica Sinica B, 2015,5(2): 158-167