Original articles
Dongyoon Kim, Quoc-Viet Le, Young Bong Kim, Yu-Kyoung Oh. Safety and photochemotherapeutic application of poly(γ-glutamic acid)-based biopolymeric nanoparticle[J]. Acta Pharmaceutica Sinica B, 2019, 9(3): 565-574

Safety and photochemotherapeutic application of poly(γ-glutamic acid)-based biopolymeric nanoparticle
Dongyoon Kima, Quoc-Viet Lea, Young Bong Kimb, Yu-Kyoung Oha
a College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea;
b Department of Biomedical Engineering, Konkuk University, Seoul 05029, Republic of Korea
Abstract:
The safety of nanomaterials, a crucial consideration for clinical translation, is enhanced by using building blocks that are biologically nontoxic. Here, we used poly(γ-glutamic acid) (γ-PGA) and dopamine as building blocks of polymeric nanomaterials for carrying hydrophobic anticancer drugs. The introduction of phenylalanine onto γ-PGA enabled the resulting amphiphilic derivative of γ-PGA acid to self-assemble in the presence of the anticancer drug paclitaxel (PTX) to form PTX-encapsulated micelles. The surfaces of PTX-loaded micelles were then coated with polymerized dopamine (PDA). The PDAcoated, amphiphilic γ-PGA-based micelles (AM) carrying PTX (PDA/AM/P) exerted near-infraredresponsive photothermal effects. Near-infrared irradiation of cancer cells treated with PDA/AM/P nanoparticles produced a greater anticancer effect than that observed in other treatment groups, indicating a synergistic effect. Intravenous administration of PDA/AM/P completely ablated tumors and prevented their recurrence. Notably, the in vivo safety profile of PDA/AM/P nanoparticles allowed PTX to be delivered at a 3.6-fold higher dose than was possible with PTX solubilized in surfactant, and circumvented the side effects of the surfactant. These results support the multifunctional potential of PDA/AM for the delivery of various hydrophobic drugs and imaging dyes for safe translation of nanomaterials into the clinic.
Key words:    Safety    Photochemotherapy    Biopolymeric nanoparticle    Poly(γ-glutamic acid)    Polymerized dopamine    Paclitaxel   
Received: 2018-10-01     Revised:
DOI: 10.1016/j.apsb.2019.01.005
Funds: This research was supported by grants from the Ministry of Science and ICT, Republic of Korea (NRF-2018R1A2A1A05019203 and NRF-2018R1A5A2024425) and from the Korean Health Technology R&D Project (Nos. HI15C2842 and HI18C2177), Ministry of Health & Welfare, Republic of Korea.
Corresponding author: Yu-Kyoung Oh     Email:ohyk@snu.ac.kr
Author description:
Service
PDF(KB) Free
Print
0
Authors
Dongyoon Kim
Quoc-Viet Le
Young Bong Kim
Yu-Kyoung Oh

References:
1. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine:progress, challenges and opportunities. Nat Rev Cancer 2017;17:20-36.
2. Adiseshaiah PP, Crist RM, Hook SS, McNeil SE. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol 2016;13:750-65.
3. Chowdhury P, Nagesh PK, Khan S, Hafeez BB, Chauhan SC, Jaggi M, et al. Development of polyvinylpyrrolidone/paclitaxel selfassemblies for breast cancer. Acta Pharm Sin B 2018;8:602-14.
4. Zhao J, Chen J, Ma S, Liu Q, Huang L, Chen X, et al. Recent developments in multimodality fluorescence imaging probes. Acta Pharm Sin B 2018;8:320-38.
5. Anselmo AC, S. Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med 2016;1:10-29.
6. Bumbaca B, Li W. Taxane resistance in castration-resistant prostate cancer:mechanisms and therapeutic strategies. Acta Pharm Sin B 2018;8:518-29.
7. Chu KF, Dupuy DE. Thermal ablation of tumours:biological mechanisms and advances in therapy. Nat Rev Cancer 2014;14:199-208.
8. Tang X, Tan L, Shi K, Peng J, Xiao Y, Li W, et al. Gold nanorods together with HSP inhibitor-VER-155008 micelles for colon cancer mildtemperature photothermal therapy. Acta Pharm Sin B 2018;8:587-601.
9. Hashida Y, Tanaka H, Zhou S, Kawakami S, Yamashita F, Murakami T, et al. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. J Control Release 2014;173:59-66.
10. Lei Q, Wang SB, Hu JJ, Lin YX, Zhu CH, Rong L, et al. Stimuliresponsive "Cluster Bomb" for programmed tumor therapy. ACS Nano 2017;11:7201-14.
11. Li Z, Liu J, Hu Y, Howard KA, Li Z, Fan X, et al. Multimodal imaging-guided antitumor photothermal therapy and drug delivery using bismuth selenide spherical sponge. ACS Nano 2016;10:9646-58.
12. Su YL, Yu TW, Chiang WH, Chiu HC, Chang CH, Chiang CS, et al. Hierarchically targeted and penetrated delivery of drugs to tumors by size-changeable graphene quantum dot nanoaircrafts for photolytic therapy. Adv Funct Mater 2017;27:170056.
13. Ogunleye A, Bhat A, Irorere VU, Hill D, Williams C, Radecka I. Poly-γ-glutamic acid:production, properties and applications. Microbiology 2015;61:1-17.
14. Liu X, Cao J, Li H, Li J, Jin Q, Ren K, et al. Mussel-inspired polydopamine:a biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano 2013;7:9384-95.
15. Ryu JH, Messersmith PB, Lee H. Polydopamine surface chemistry:a decade of discovery. ACS Appl Mater Interfaces 2018;10:7523-40.
16. Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Dopamine-melanin colloidal nanospheres:an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 2013;25:1353-9.
17. Shim G, Ko S, Kim D, Le QV, Park GT, Lee J, et al. Light-switchable systems for remotely controlled drug delivery. J Control Release 2017;267:67-79.
18. Zhang L, Su H, Cai J, Cheng D, Ma Y, Zhang J, et al. A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods. ACS Nano 2016;10:10404-17.
19. Kim H, Kim DW, Vasagar V, Ha H, Nazarenko S, Ellison CJ. Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold. Adv Funct Mater 2018;28:1803172.
20. Yu S, Li G, Liu R, Ma D, Xue W. Dendritic Fe3O4@poly(dopamine)@PAMAM nanocomposite as controllable NO-releasing material:a synergistic photothermal and NO antibacterial study. Adv Funct Mater 2018;28:1707440.
21. Shim G, Kim D, Kim J, Suh MS, Kim YK, Oh YK. Bacteriomimetic poly-γ-glutamic acid surface coating for hemocompatibility and safety of nanomaterials. Nanotoxicology 2017;11:762-70.
22. Kowalczuk M, Adamus G, Jedlinski Z. Synthesis of new graft polymers via anionic grafting of beta-butyrolactone on poly (methyl methacrylate). Macromolecules 1994;27:572-5.
23. Shim G, Choi HW, Lee S, Choi H, Yu YH, Park DE, et al. Enhanced intrapulmonary delivery of anticancer siRNA for lung cancer therapy using cationic ethylphosphocholine-based nanolipoplexes. Mol Ther 2013;21:816-24.
24. Akhila JS, Shyamjith D, Alwar M. Acute toxicity studies and determination of median lethal dose. Curr Sci 2007;93:917-20.
25. Kim MG, Shon Y, Kim J, Oh YK. Selective activation of anticancer chemotherapy by cancer-associated fibroblasts in the tumor microenvironment. J Natl Cancer Inst 2017;109:djw108.
26. Ahmad Z, Shah A, Siddiq M, Kraatz HB. Polymeric micelles as drug delivery vehicles. RSC Adv 2014;4:17028-38.
27. Wu Y, Yan M, Cui J, Yan Y, Li C. A multiple-functional Ag/SiO2/organic based biomimetic nanocomposite membrane for high-stability protein recognition and cell adhesion/detachment. Adv Funct Mater 2015;25:5823-32.
28. Li F, Du M, Zheng Q. Dopamine/silica nanoparticle assembled, microscale porous structure for versatile superamphiphobic coating. ACS Nano 2016;10:2910-21.
29. Zhou J, Xiong Q, Ma J, Ren J, Messersmith PB, Chen P, et al. Polydopamine-enabled approach toward tailored plasmonic nanogapped nanoparticles:from nanogap engineering to multifunctionality. ACS Nano 2016;10:11066-75.
30. Bang SH, Yu YM, Hwang IC, Park HJ. Formation of size-controlled nano carrier systems by self-assembly. J Microencapsul 2009;26:722-33.
31. Weaver BA. How Taxol/PTX kills cancer cells. Mol Biol Cell 2014;25:2677-81.
32. Liu J, Zheng X, Yan L, Zhou L, Tian G, Yin W, et al. Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imagingguided photothermal therapy of tumor. ACS Nano 2015;9:696-707.
33. Wang R, Zhao N, Xu FJ. Hollow nanostars with photothermal gold caps and their controlled surface functionalization for complementary therapies. Adv Funct Mater 2017;27:1700256-66.
34. Yang T, Tang Y, Liu L, Lv X, Wang Q, Ke H, et al. Size-dependent Ag2S nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy. ACS Nano 2017;11:1848-57.
35. Li KC, Chu HC, Lin Y, Tuan HY, Hu YC. PEGylated copper nanowires as a novel photothermal therapy agent. ACS Appl Mater Interfaces 2016;8:12082-90.
36. Bettinger CJ, Bruggeman JP, Misra A, Borenstein JT, Langer R. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials 2009;30:3050-7.
37. Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL:the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 2001;37:1590-8.
38. Utreja P, Jain S, Tiwary A. Evaluation of biosafety and intracellular uptake of Cremophor EL free paclitaxel elastic liposomal formulation. Drug Deliv 2012;19:11-20.
39. Imtiaz F, Shafique K, Mirza SS, Ayoob Z, Vart P, Rao S. Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population. Int Arch Med 2012;5:2.
40. Lattanzi S, Cagnetti C, Provinciali L, Silvestrini M. Neutrophil-tolymphocyte ratio predicts the outcome of acute intracerebral hemorrhage. Stroke 2016;47:1654-7.
41. Hickman DL. Evaluation of the neutrophil:lymphocyte ratio as an indicator of chronic distress in the laboratory mouse. Lab Anim 2017;46:303-7.
42. Grigorian A, O'Brien CB. Hepatotoxicity secondary to chemotherapy. J Clin Transl Hepatol 2014;2:95-102.
43. Bonventre JV, Vaidya VS, Schmouder R, Feig P, Dieterle F. Nextgeneration biomarkers for detecting kidney toxicity. Nat Biotechnol 2010;28:436-40.