Reviews
Pingyu Liu, Yijun Wang, Xin Li. Targeting the untargetable KRAS in cancer therapy[J]. Acta Pharmaceutica Sinica B, 2019, 9(5): 871-879

Targeting the untargetable KRAS in cancer therapy
Pingyu Liua, Yijun Wanga, Xin Lib
a Pharmacy Department, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China;
b Department of Clinical Pharmacy, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
Abstract:
RAS is one of the most well-known proto-oncogenes. Its gain-of-function mutations occur in approximately 30% of all human cancers. As the most frequently mutated RAS isoform, KRAS is intensively studied in the past years. Despite its well-recognized importance in cancer malignancy, continuous efforts in the past three decades failed to develop approved therapies for KRAS mutant cancer. KRAS has thus long been considered to be undruggable. Encouragingly, recent studies have aroused renewed interest in the development of KRAS inhibitors either directly towards mutant KRAS or against the crucial steps required for KRAS activation. This review summarizes the most recent progress in the exploration of KRAS-targeted anticancer strategies and hopefully provides useful insights for the field.
Key words:    KRAS    Oncogene    Mutation    Cancer    Inhibitor    Targeted therapy   
Received: 2018-12-20     Revised: 2019-01-29
DOI: 10.1016/j.apsb.2019.03.002
Corresponding author: Pingyu Liu     Email:judy_liupy@163.com
Author description:
Service
PDF(KB) Free
Print
0
Authors
Pingyu Liu
Yijun Wang
Xin Li

References:
1. Huang M, Shen A, Ding J, Geng M. Molecularly targeted cancer therapy:some lessons from the past decade. Trends Pharmacol Sci 2014;35:41-50.
2. Jancik S, Drabek J, Radzioch D, Hajduch M. Clinical relevance of KRAS in human cancers. J Biomed Biotechnol 2010;2010:150960.
3. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. Ras oncogenes:weaving a tumorigenic web. Nat Rev Cancer 2011;11:761-74.
4. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS:mission possible?. Nat Rev Drug Discov 2014;13:828-51.
5. Singh H, Longo DL, Chabner BA. Improving prospects for targeting RAS. J Clin Oncol 2015;33:3650-9.
6. Stephen AG, Esposito D, Bagni RK, McCormick F. Dragging RAS back in the ring. Cancer Cell 2014;25:272-81.
7. Papke B, Der CJ. Drugging RAS:know the enemy. Science 2017;355:1158-63.
8. Cox AD, Der CJ, Philips MR. Targeting RAS membrane association:back to the future for anti-RAS drug discovery?. Clin Cancer Res 2015;21:1819-27.
9. Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG. Posttranslational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov 2007;6:541-55.
10. Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs:critical elements in the control of small G proteins. Cell 2007;129:865-77.
11. Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, et al. The Ras-RasGAP complex:structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 1997;277:333-8.
12. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR. Regulating the regulator:post-translational modification of RAS. Nat Rev Mol Cell Biol 2011;13:39-51.
13. Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 2015;16:281-98.
14. Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res 2012;72:2457-67.
15. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras (G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 2013;503:548-51.
16. Ostrem JM, Shokat KM. Direct small-molecule inhibitors of KRAS:from structural insights to mechanism-based design. Nat Rev Drug Discov 2016;15:771-85.
17. Tyner JW, Erickson H, Deininger MW, Willis SG, Eide CA, Levine RL, et al. High-throughput sequencing screen reveals novel, transforming RAS mutations in myeloid leukemia patients. Blood 2009;113:1749-55.
18. Edkins S, O'Meara S, Parker A, Stevens C, Reis M, Jones S, et al. Recurrent KRAS codon 146 mutations in human colorectal cancer. Cancer Biol Ther 2006;5:928-32.
19. De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 2010;304:1812-20.
20. Andreyev HJ, Norman AR, Cunningham D, Oates JR, Clarke PA. Kirsten ras mutations in patients with colorectal cancer:the multicenter "RASCAL" study. J Natl Cancer Inst 1998;90:675-84.
21. Keohavong P, DeMichele MA, Melacrinos AC, Landreneau RJ, Weyant RJ, Siegfried JM. Detection of K-ras mutations in lung carcinomas:relationship to prognosis. Clin Cancer Res 1996;2:411-8.
22. Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast TH, Zwarthoff EC. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS One 2010;5:e13821.
23. Westcott PM, Halliwill KD, To MD, Rashid M, Rust AG, Keane TM, et al. The mutational landscapes of genetic and chemical models of KRAS-driven lung cancer. Nature 2015;517:489-92.
24. Burgess MR, Hwang E, Mroue R, Bielski CM, Wandler AM, Huang BJ, et al. KRAS allelic imbalance enhances fitness and modulates map kinase dependence in cancer. Cell 2017;168:817-29.
25. Young A, Lou D, McCormick F. Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling. Cancer Discov 2013;3:112-23.
26. Ambrogio C, Kohler J, Zhou ZW, Wang H, Paranal R, Li J, et al. KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic activity of mutant KRAS. Cell 2018;172[857-68 e15].
27. di Magliano MP, Logsdon CD. Roles for KRAS in pancreatic tumor development and progression. Gastroenterology 2013;144:1220-9.
28. Kortlever RM, Sodir NM, Wilson CH, Burkhart DL, Pellegrinet L, Brown Swigart L, et al. Myc cooperates with Ras by programming inflammation and immune suppression. Cell 2017;171:1301-15.
29. Fukuda A, Wang SC, Morris JPt, Folias AE, Liou A, Kim GE, et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 2011;19:441-55.
30. Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012;21:836-47.
31. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012;21:822-35.
32. Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles' heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B 2018;8:552-62.
33. Vallejo A, Perurena N, Guruceaga E, Mazur PK, Martinez-Canarias S, Zandueta C, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun 2017;8:14294.
34. Morris EJ, Jha S, Restaino CR, Dayananth P, Zhu H, Cooper A, et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov 2013;3:742-50.
35. Lito P, Solomon M, Li LS, Hansen R, Rosen N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 2016;351:604-8.
36. Shipman L. Signalling:putting the brakes on KRAS-G12C nucleotide cycling. Nat Rev Cancer 2016;16:127.
37. Patricelli MP, Janes MR, Li LS, Hansen R, Peters U, Kessler LV, et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov 2016;6:316-29.
38. Janes MR, Zhang J, Li LS, Hansen R, Peters U, Guo X, et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 2018;172:578-89.
39. Sakamoto K, Kamada Y, Sameshima T, Yaguchi M, Niida A, Sasaki S, et al. K-Ras (G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology. Biochem Biophys Res Commun 2017;484:605-11.
40. Berndt N, Hamilton AD, Sebti SM. Targeting protein prenylation for cancer therapy. Nat Rev Cancer 2011;11:775-91.
41. Liu M, Sjogren AK, Karlsson C, Ibrahim MX, Andersson KM, Olofsson FJ, et al. Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer. Proc Natl Acad Sci U S A 2010;107:6471-6.
42. Chandra A, Grecco HE, Pisupati V, Perera D, Cassidy L, Skoulidis F, et al. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol 2011;14:148-58.
43. Zimmermann G, Papke B, Ismail S, Vartak N, Chandra A, Hoffmann M, et al. Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature 2013;497:638-42.
44. Papke B, Murarka S, Vogel HA, Martin-Gago P, Kovacevic M, Truxius DC, et al. Identification of pyrazolopyridazinones as PDEδ inhibitors. Nat Commun 2016;7:11360.
45. Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 2012;15:157-70.
46. Mayers JR, Torrence ME, Danai LV, Papagiannakopoulos T, Davidson SM, Bauer MR, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant KRAS-driven cancers. Science 2016;353:1161-5.
47. Bryant KL, Mancias JD, Kimmelman AC, Der CJ. KRAS:feeding pancreatic cancer proliferation. Trends Biochem Sci 2014;39:91-100.
48. Hutton JE, Wang X, Zimmerman LJ, Slebos RJ, Trenary IA, Young JD, et al. Oncogenic KRAS and BRAF drive metabolic reprogramming in colorectal cancer. Mol Cell Proteom 2016;15:2924-38.
49. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRASregulated metabolic pathway. Nature 2013;496:101-5.
50. Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 2015;350:1391-6.
51. Padanad MS, Konstantinidou G, Venkateswaran N, Melegari M, Rindhe S, Mitsche M, et al. Fatty acid oxidation mediated by acylcoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep 2016;16:1614-28.
52. Singh A, Ruiz C, Bhalla K, Haley JA, Li QK, Acquaah-Mensah G, et al. De novo lipogenesis represents a therapeutic target in mutant Kras non-small cell lung cancer. FASEB J 2018;32:7018-27.
53. Chan DA, Giaccia AJ. Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 2011;10:351-64.
54. Aguirre AJ, Hahn WC. Synthetic lethal vulnerabilities in KRAS-mutant cancers. Cold Spring Harb Perspect Med 2018;8:a031518.
55. Dietlein F, Kalb B, Jokic M, Noll EM, Strong A, Tharun L, et al. A synergistic interaction between Chk1-and MK2 inhibitors in KRASmutant cancer. Cell 2015;162:146-59.
56. Corcoran RB, Cheng KA, Hata AN, Faber AC, Ebi H, Coffee EM, et al. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell 2013;23:121-8.
57. Kumar MS, Hancock DC, Molina-Arcas M, Steckel M, East P, Diefenbacher M, et al. The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 2012;149:642-55.
58. Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res 2017;23:3012-24.
59. Cong J, Wang X, Zheng X, Wang D, Fu B, Sun R, et al. Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell Metab 2018;28:243-55.
Similar articles:
1.Zilan Song, Meining Wang, Ao Zhang.Alectinib:a novel second generation anaplastic lymphoma kinase(ALK)inhibitor for overcoming clinically-acquired resistance[J]. Acta Pharmaceutica Sinica B, 2015,5(1): 34-37
2.Xusheng Wang, Haiyan Chen, Xiaowei Zeng, Wenpeng Guo, Yu Jin, Shan Wang, Ruiyun Tian, Yanjiang Han, Ling Guo, Jimin Han, Yaojiong Wu, Lin Mei.Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system[J]. Acta Pharmaceutica Sinica B, 2019,9(1): 167-176
3.Wenxiao Jiang, Guiqing Cai, Peter C. Hu, Yue Wang.Personalized medicine in non-small cell lung cancer: a review from a pharmacogenomics perspective[J]. Acta Pharmaceutica Sinica B, 2018,8(4): 530-538
4.Feifei Liu, Xiaotong Yang, Meiyu Geng, Min Huang.Targeting ERK, an Achilles' Heel of the MAPK pathway, in cancer therapy[J]. Acta Pharmaceutica Sinica B, 2018,8(4): 552-562
5.Rajesh Basnet, Grace Qun Gong, Chenyao Li, Ming-Wei Wang.Serum and glucocorticoid inducible protein kinases (SGKs): a potential target for cancer intervention[J]. Acta Pharmaceutica Sinica B, 2018,8(5): 767-771
6.Wennan Zhao, Yuling Qiu, Dexin Kong.Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy[J]. Acta Pharmaceutica Sinica B, 2017,7(1): 27-37
7.Heggodu G. Rohit Kumar, Chethan S. Kumar, Hulihalli N. Kiran Kumar, Gopal M. Advi Rao.Inhibition of protein kinases by anticancer DNA intercalator, 4-butylaminopyrimido[4',5':4,5] thieno(2,3-b)quinoline[J]. Acta Pharmaceutica Sinica B, 2017,7(3): 303-310
8.Danqi Chen, Aijun Shen, Guanghua Fang, Hongchun Liu, Minmin Zhang, Shuai Tang, Bing Xiong, Lanping Ma, Meiyu Geng, Jingkang Shen.Tetrahydroisoquinolines as novel histone deacetylase inhibitors for treatment of cancer[J]. Acta Pharmaceutica Sinica B, 2016,6(1): 93-99
9.Eun Ji Hong, Dae Gun Choi, Min Suk Shim.Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials[J]. Acta Pharmaceutica Sinica B, 2016,6(4): 297-307
10.Georgina N. Masoud, Wei Li.HIF-1α pathway: role, regulation and intervention for cancer therapy[J]. Acta Pharmaceutica Sinica B, 2015,5(5): 378-389