Original articles
Lu Chen, Le Chen, Zhiyuan Qin, Jinxiu Lei, Sheng Ye, Kui Zeng, Hua Wang, Meidan Ying, Jianqing Gao, Su Zeng, Lushan Yu. Upregulation of miR-489-3p and miR-630 inhibits oxaliplatin uptake in renal cell carcinoma by targeting OCT2[J]. Acta Pharmaceutica Sinica B, 2019, 9(5): 1008-1020

Upregulation of miR-489-3p and miR-630 inhibits oxaliplatin uptake in renal cell carcinoma by targeting OCT2
Lu Chena, Le Chena, Zhiyuan Qina, Jinxiu Leia, Sheng Yeb, Kui Zenga, Hua Wangc, Meidan Yinga, Jianqing Gaoa, Su Zenga, Lushan Yua
a Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
b Paediatric Intensive Care Unit, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
c Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou 310022, China
Abstract:
Renal cell carcinoma (RCC) is one of the most common malignant tumors affecting the urogenital system, accounting for 90% of renal malignancies. Traditional chemotherapy options are often the front-line choice of regimen in the treatment of patients with RCC, but responses may be modest or limited due to resistance of the tumor to anticarcinogen. Downregulated expression of organic cation transporter OCT2 is a possible mechanism underlying oxaliplatin resistance in RCC treatment. In this study, we observed that miR-489-3p and miR-630 suppress OCT2 expression by directly binding to the OCT2 3'-UTR. Meanwhile, via 786-O-OCT2-miRNAs stable expression cell models, we found that miRNAs could repress the classic substrate 1-methyl-4-phenylpyridinium (MPP+), fluorogenic substrate N,N-dimethyl-4-(2-pyridin-4-ylethenyl) aniline (ASP+), and oxaliplatin uptake by OCT2 both in vitro and in xenografts. In 33 clinical samples, miR-489-3p and miR-630 were significantly upregulated in RCC, negatively correlating with the OCT2 expression level compared to that in adjacent normal tissues, using tissue microarray analysis and qPCR validation. The increased binding of c-Myc to the promoter of pri-miR-630, responsible for the upregulation of miR-630 in RCC, was further evidenced by chromatin immunoprecipitation and dual-luciferase reporter assay. Overall, this study indicated that miR-489-3p and miR-630 function as oncotherapy-obstructing microRNAs by directly targeting OCT2 in RCC.
Key words:    OCT2    miRNA    Renal cell carcinoma    Epigenetic regulation    Oxaliplatin   
Received: 2018-08-25     Revised: 2018-11-04
DOI: 10.1016/j.apsb.2019.01.002
Funds: This work was supported by grants from National Natural Science Foundation of China (81773817), The National Key Research and Development Program of China (2017YFC0908600), Fundamental Research Funds for the Central Universities (2017XZZX011-04, China) and Zhejiang University K.P.Chao's High Technology Development Foundation (China).
Corresponding author: Lushan Yu     Email:yuls@zju.edu.cn
Author description:
Service
PDF(KB) Free
Print
0
Authors
Lu Chen
Le Chen
Zhiyuan Qin
Jinxiu Lei
Sheng Ye
Kui Zeng
Hua Wang
Meidan Ying
Jianqing Gao
Su Zeng
Lushan Yu

References:
1. Bartel DP. MicroRNAs:target recognition and regulatory functions. Cell 2009;136:215-33.
2. Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation. Cell 2011;144:646-74.
3. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids-the mix of hormones and biomarkers. Nat Rev Clin Oncol 2011;8:467-77.
4. Fabbri M. MiRNAs as molecular biomarkers of cancer. Expert Rev Mol Diagn 2010;10:435-44.
5. Sellitti DF, Doi SQ. MicroRNAs in renal cell carcinoma. Microrna 2015;4:26-35.
6. Jung M, Mollenkopf HJ, Grimm C, Wagner I, Albrecht M, Waller T, et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J Cell Mol Med 2009;13:3918-28.
7. Lokeshwar SD, Talukder A, Yates TJ, Hennig MJP, Garcia-Roig M, Lahorewala SS, et al. Molecular characterization of renal cell carcinoma:a potential three-microrna prognostic signature. Cancer Epidemiol Biomarkers Prev 2018;27:464-72.
8. Butz H, Nofech-Mozes R, Ding Q, Khella HWZ, Szabo PM, Jewett M, et al. Exosomal microRNAs are diagnostic biomarkers and can mediate cell-cell communication in renal cell carcinoma. Eur Urol Focus 2016;2:210-8.
9. Lukamowicz-Rajska M, Mittmann C, Prummer M, Zhong Q, Bedke J, Hennenlotter J, et al. MiR-99b-5p expression and response to tyrosine kinase inhibitor treatment in clear cell renal cell carcinoma patients. Oncotarget 2016;7:78433-47.
10. Levi F, Ferlay J, Galeone C, Lucchini F, Negri E, Boyle P, et al. The changing pattern of kidney cancer incidence and mortality in Europe. Bju Int 2008;101:949-58.
11. Duran I, Lambea J, Maroto P, Gonzalez-Larriba JL, Flores L, Granados-Principal S, et al. Resistance to targeted therapies in renal cancer:the importance of changing the mechanism of action. Target Oncol 2017;12:19-35.
12. Singer EA, Gupta GN, Srinivasan R. Update on targeted therapies for clear cell renal cell carcinoma. Curr Opin Oncol 2011;23:283-9.
13. Heng DY, Xie W, Regan MM, Harshman LC, Bjarnason GA, Vaishampayan UN, et al. External validation and comparison with other models of the international metastatic renal-cell carcinoma database consortium prognostic model:a population-based study. Lancet Oncol 2013;14:141-8.
14. Zhu L, Wang J, Kong W, Huang J, Dong B, Huang Y, et al. LSD1 inhibition suppresses the growth of clear cell renal cell carcinoma via upregulating P21 signaling. Acta Pharm Sin B 2019;9:324-34.
15. Ding M, Lu X, Wang C, Zhao Q, Ge J, Xia Q, et al. The E2F1-miR-520/372/373-SPOP axis modulates progression of renal carcinoma. Cancer Res 2018.
16. Cho H, Du X, Rizzi JP, Liberzon E, Chakraborty AA, Gao W, et al. On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature 2016;539:107-11.
17. Yu Q, Liu Y, Zheng X, Zhu Q, Shen Z, Wang H, et al. Histone H3 lysine 4 trimethylation, lysine 27 trimethylation, and lysine 27 acetylation contribute to the transcriptional repression of solute carrier family 47 member 2 in renal cell carcinoma. Drug Metab Dispos 2017;45:109-17.
18. Liu YQ, Zheng XL, Yu QQ, Wang H, Tan FQ, Zhu QY, et al. Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin. Sci Transl Med 2016;8.
19. An X, Sarmiento C, Tan T, Zhu H. Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B 2017;7:38-51.
20. Wang K, Sun SY, Li LP, Tu MJ, Jiang HD. Involvement of organic cation transporter 2 inhibition in potential mechanisms of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry 2014;53:90-8.
21. Chow TFF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, Stewart R, et al. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem 2010;43:150-8.
22. Zhao JJ, Chen PJ, Duan RQ, Li KJ, Wang YZ, Li Y. Up-regulation of miR-630 in clear cell renal cell carcinoma is associated with lower overall survival. Int J Clin Exp Pathol 2014;7:3318-23.
23. Garofalo M, Leva GD, Croce CM. MicroRNAs as anti-cancer therapy. Curr Pharm Des 2014;20:5328-35.
24. Niaz S. The AGO proteins:an overview. Biol Chem 2018;399:525-47.
25. Nilsson JA, Cleveland JL. Myc pathways provoking cell suicide and cancer. Oncogene 2003;22:9007-21.
26. Arsanious A, Bjarnason GA, Yousef GM. From bench to bedside:current and future applications of molecular profiling in renal cell carcinoma. Mol Cancer 2009;8:20.
27. Wang C, Hu JC, Lu ML, Gu HW, Zhou XJ, Chen X, et al. A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci Rep 2015;5.
28. Huang X, Liang M, Dittmar R, Wang L. Extracellular microRNAs in urologic malignancies:chances and challenges. Int J Mol Sci 2013;14:14785-99.
29. Chu DK, Zhao ZW, Li YM, Li JP, Zheng JY, Wang WZ, et al. Increased microRNA-630 expression in gastric cancer is associated with poor overall survival. PLoS One 2014;9:e90526.
30. Zhang JW, Li Y, Zeng XC, Zhang T, Fu BS, Yi HM, et al. miR-630 overexpression in hepatocellular carcinoma tissues is positively correlated with α-fetoprotein. Med Sci Monit 2015;21:667-73.
31. Eoh KJ, Lee SH, Kim HJ, Lee JY, Kim S, Kim SW, et al. MicroRNA-630 inhibitor sensitizes chemoresistant ovarian cancer to chemotherapy by enhancing apoptosis. Biochem Biophys Res Commun 2018;497:513-20.
32. Farhana L, Dawson MI, Murshed F, Das JK, Rishi AK, Fontana JA. Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R. PLoS One 2013;8:e61015.
33. Rupaimoole R, Ivan C, Yang D, Gharpure KM, Wu SY, Pecot CV, et al. Hypoxia-upregulated microRNA-630 targets Dicer, leading to increased tumor progression. Oncogene 2016;35:4312-20.
34. Li J, Qu WX, Jiang YZ, Sun Y, Cheng YY, Zou TJ, et al. MiR-489 suppresses proliferation and invasion of human bladder cancer cells. Oncol Res 2016;24:391-8.
35. Tao YM, Han T, Zhang T, Ma C, Sun CX. LncRNA CHRF-induced miR-489 loss promotes metastasis of colorectal cancer via TWIST1/EMT signaling pathway. Oncotarget 2017;8:36410-22.
36. Patel Y, Shah N, Lee JS, Markoutsa E, Jie CF, Liu S, et al. A novel double-negative feedback loop between miR-489 and the HER2-SHP2-MAPK signaling axis regulates breast cancer cell proliferation and tumor growth. Oncotarget 2016;7:18295-308.
37. Liu QF, Yang GC, Qian YY. Loss of microRNA-489-3p promotes osteosarcoma metastasis by activating PAX3-MET pathway. Mol Carcinog 2017;56:1312-21.
38. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 2010;40:294-309.
39. Bertout JA, Patel SA, Simon MC. The impact of O-2 availability on human cancer. Nat Rev Cancer 2008;8:967-75.
40. Wei QQ, Liu Y, Liu PY, Hao JL, Liang MY, Mi QS, et al. MicroRNA-489 induction by hypoxia-inducible factor-1 protects against ischemic kidney injury. J Am Soc Nephrol 2016;27:2784-96.
41. Jimenez-Valerio G, Martinez-Lozano M, Bassani N, Vidal A, Ochoade-Olza M, Suarez C, et al. Resistance to antiangiogenic therapies by metabolic symbiosis in renal cell carcinoma PDX models and patients. Cell Rep 2016;15:1134-43.
42. Hong BA, Yang Y, Guo S, Duoerkun S, Deng XH, Chen DW, et al. Intra-tumour molecular heterogeneity of clear cell renal cell carcinoma reveals the diversity of the response to targeted therapies using patientderived xenograft models. Oncotarget 2017;8:49839-50.
43. Su X, Wang H, Ge W, Yang M, Hou J, Chen T, et al. An in vivo method to identify microrna targets not predicted by computation algorithms:p21 targeting by miR-92a in cancer. Cancer Res 2015;75:2875-85.
44. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006;30:3.22.1-29.