Original articles
Xiyue Zhao, Xiaoyu Liu, Pengcheng Zhang, Yiran Liu, Wei Ran, Ying Cai, Junyang Wang, Yihui Zhai, Guanru Wang, Yaping Ding, Yaping Li. Injectable peptide hydrogel as intraperitoneal triptolide depot for the treatment of orthotopic hepatocellular carcinoma[J]. Acta Pharmaceutica Sinica B, 2019, 9(5): 1050-1060

Injectable peptide hydrogel as intraperitoneal triptolide depot for the treatment of orthotopic hepatocellular carcinoma
Xiyue Zhaoa,b, Xiaoyu Liub, Pengcheng Zhangb,c,e, Yiran Liub,f, Wei Ranb,e, Ying Caib,e, Junyang Wangb,g, Yihui Zhaib,e, Guanru Wangb, Yaping Dinga, Yaping Lib,d,e
a Department of Chemistry, Shanghai University, Shanghai 200444, China;
b State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
c Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China;
d School of Pharmacy, Yantai University, Yantai 264005, China;
e University of Chinese Academy of Sciences, Beijing 100049, China;
f Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China;
g Jilin University, Changchun 130012, China
Chemotherapy is among the limited choices approved for the treatment of hepatocellular carcinoma (HCC) at intermediate and advanced stages. Preferential and prolonged drug exposure in diseased sites is required to maximize the therapeutic index of the drug. Here, we report an injectable supramolecular peptide hydrogel as an intraperitoneal depot for localized and sustained release of triptolide for the treatment of orthotopic HCC. We chose peptide amphiphile C16-GNNQQNYKD-OH-based nanofibers as gelators and carriers for triptolide. Sustained triptolide release from the hydrogel was achieved over 14 days in vitro, with higher accumulation in and cytotoxicity against human HCC Bel-7402 in comparison with L-02 fetal hepatocytes. After intraperitoneal injection, the hydrogel showed prolonged retention over 13 days and preferential accumulation in the liver, realizing HCC growth inhibition by 99.7±0.1% and animal median survival extension from 19 to 43 days, without causing noticeable pathological changes in the major organs. These results demonstrate that injectable peptide hydrogel can be a potential carrier for localized chemotherapy of HCC.
Key words:    Self-assembly    Hydrogel    Peptide amphiphile    Triptolide    Hepatocellular carcinoma   
Received: 2019-04-17     Revised: 2019-05-10
DOI: 10.1016/j.apsb.2019.06.001
Funds: We thank the National Natural Science Foundation of China (Nos. 81690265, 31870995, 81671808 and 81630052),Youth Innovation Promotion Association of the Chinese Academy of Sciences (2017335, China), and SA-SIBS Scholarship Program for financial support (China). We are grateful to National Centre for Protein Science Shanghai (Electron Microscopy system) for instrument support and technical assistance during data collection.
Corresponding author: Pengcheng Zhang, Yaping Li     Email:pzhang@simm.ac.cn;ypli@simm.ac.cn
Author description:
PDF(KB) Free
Xiyue Zhao
Xiaoyu Liu
Pengcheng Zhang
Yiran Liu
Wei Ran
Ying Cai
Junyang Wang
Yihui Zhai
Guanru Wang
Yaping Ding
Yaping Li

1. Wang HD, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015:a systematic analysis for the global burden of disease study 2015. Lancet 2016;388:1459-544.
2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics. CA A Cancer J Clin 2012;65:87-108. 2015.
3. Llovet JM, Villanueva A, Lachenmayer A, Finn RS. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol 2015;12:408-24.
4. Fu J, Wang H. Precision diagnosis and treatment of liver cancer in China. Cancer Lett 2018;412:283-8.
5. Forner A, Gilabert M, Bruix J, Raoul JL. Treatment of intermediatestage hepatocellular carcinoma. Nat Rev Clin Oncol 2014;11:525-35.
6. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359:378-90.
7. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224):a nonrandomised, open-label phase 2 trial. Lancet Oncol 2018;19:940-52.
8. Zaanan A, Williet N, Hebbar M, Dabakuyo TS, Fartoux L, Mansourbakht T, et al. Gemcitabine plus oxaliplatin in advanced hepatocellular carcinoma:a large multicenter AGEO study. J Hepatol 2013;58:81-8.
9. Phillips PA, Dudeja V, McCarroll JA, Borja-Cacho D, Dawra RK, Grizzle WE, et al. Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70. Cancer Res 2007;67:9407-16.
10. Mujumdar N, Mackenzie TN, Dudeja V, Chugh R, Antonoff MB, Borja-Cacho D, et al. Triptolide induces cell death in pancreatic cancer cells by apoptotic and autophagic pathways. Gastroenterology 2010;139:598-608.
11. Ling D, Xia H, Park W, Hackett MJ, Song C, Na K, et al. pH-Sensitive nanoformulated triptolide as a targeted therapeutic strategy for hepatocellular carcinoma. ACS Nano 2014;8:8027-39.
12. Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751-60.
13. Liang Y, Tian B, Zhang J, Li K, Wang L, Han J, et al. Tumor-targeted polymeric nanostructured lipid carriers with precise ratiometric control over dual-drug loading for combination therapy in non-small-cell lung cancer. Int J Nanomed 2017;12:1699-715.
14. Tsoi KM, MacParland SA, Ma XZ, Spetzler VN, Echeverri J, Ouyang B, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater 2016;15:1212-21.
15. Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 2011;10:389-97.
16. Lu J, Wang J, Ling D. Surface engineering of nanoparticles for targeted delivery to hepatocellular carcinoma. Small 2018;14:1702037.
17. Xia H, Li F, Hu X, Park W, Wang S, Jang Y, et al. pH-Sensitive Pt nanocluster assembly overcomes cisplatin resistance and heterogeneous stemness of hepatocellular carcinoma. ACS Cent Sci 2016;2:802-11.
18. Lu J, Sun J, Li F, Wang J, Liu J, Kim D, et al. Highly sensitive diagnosis of small hepatocellular carcinoma using pH-responsive iron oxide nanocluster assemblies. J Am Chem Soc 2018;140:10071-4.
19. Chi Y, Yin X, Sun K, Feng S, Liu J, Chen D, et al. Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J Control Release 2017;261:113-25.
20. Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer SK, Stauber RH. The nanoparticle biomolecule corona:lessons learnedchallenge accepted?. Chem Soc Rev 2015;44:6094-121.
21. Markman M. Intraperitoneal antineoplastic drug delivery:rationale and results. Lancet Oncol 2003;4:277-83.
22. Lin G, Lunderquist A, Hägerstrand I, Boijsen E. Postmortem examination of the blood supply and vascular pattern of small liver metastases in man. Surgery 1984;96:517-26.
23. Werner ME, Karve S, Sukumar R, Cummings ND, Copp JA, Chen RC, et al. Folate-targeted nanoparticle delivery of chemo-and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 2011;32:8548-54.
24. Deng Y, Yang F, Cocco E, Song E, Zhang J, Cui J, et al. Improved i.p. drug delivery with bioadhesive nanoparticles. Proc Natl Acad Sci U S A 2016;113:11453-8.
25. Parker RJ, Hartman KD, Sieber SM. Lymphatic absorption and tissue disposition of liposome-entrapped[14C]adriamycin following intraperitoneal administration to rats. Cancer Res 1981;41:1311-7.
26. Lukas G, Brindle SD, Greengard P. The route of absorption of intraperitoneally administered compounds. J Pharmacol Exp Ther 1971; 178:562-6.
27. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater 2016;1:16071.
28. Gao W, Vecchio D, Li J, Zhu J, Zhang Q, Fu V, et al. Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano 2014;8:2900-7.
29. Bajaj G, Kim MR, Mohammed SI, Yeo Y. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J Control Release 2012;158:386-92.
30. Sato K, Hendricks MP, Palmer LC, Stupp SI. Peptide supramolecular materials for therapeutics. Chem Soc Rev 2018;47:7539-51.
31. Goor OJ, Hendrikse SI, Dankers PY, Meijer EW. From supramolecular polymers to multi-component biomaterials. Chem Soc Rev 2017;46:6621-37.
32. Jonker AM, Lowik DW, van Hest JC. Peptide-and protein-based hydrogels. Chem Mater 2012;24:759-73.
33. Smith DJ, Brat GA, Medina SH, Tong D, Huang Y, Grahammer J, et al. A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels. Nat Nanotechnol 2016;11:95-102.
34. Moore AN, Hartgerink JD. Self-assembling multidomain peptide nanofibers for delivery of bioactive molecules and tissue regeneration. Acc Chem Res 2017;50:714-22.
35. Koutsopoulos S, Unsworth LD, Nagai Y, Zhang S. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci U S A 2009;106:4623-8.
36. Asai D, Xu D, Liu W, Garcia Quiroz F, Callahan DJ, Zalutsky MR, et al. Protein polymer hydrogels by in situ, rapid and reversible selfgelation. Biomaterials 2012;33:5451-8.
37. Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 2002;417:424-8.
38. Fichman G, Gazit E. Self-assembly of short peptides to form hydrogels:design of building blocks, physical properties and technological applications. Acta Biomater 2014;10:1671-82.
39. Frederix PW, Scott GG, Abul-Haija YM, Kalafatovic D, Pappas CG, Javid N, et al. Exploring the sequence space for (tri-)peptide selfassembly to design and discover new hydrogels. Nat Chem 2015;7:30-7.
40. O'Leary LE, Fallas JA, Bakota EL, Kang MK, Hartgerink JD. Multihierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat Chem 2011;3:821-8.
41. Tanrikulu IC, Forticaux A, Jin S, Raines RT. Peptide tessellation yields micrometre-scale collagen triple helices. Nat Chem 2016;8:1008-14.
42. Yan C, Pochan DJ. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev 2010;39:3528-40.
43. Clarke DE, Parmenter CD, Scherman OA. Tunable pentapeptide selfassembled b-sheet hydrogels. Angew Chem Int Ed Engl 2018;57:7709-13.
44. De Leon Rodriguez LM, Hemar Y, Cornish J, Brimble MA. Structuremechanical property correlations of hydrogel forming b-sheet peptides. Chem Soc Rev 2016;45:4797-824.
45. Du X, Zhou J, Shi J, Xu B. Supramolecular hydrogelators and hydrogels:from soft matter to molecular biomaterials. Chem Rev 2015;115:13165-307.
46. Fu IW, Markegard CB, Nguyen HD. Solvent effects on kinetic mechanisms of self-assembly by peptide amphiphiles via molecular dynamics simulations. Langmuir 2015;31:315-24.
47. Li YL, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels:gelation, biodegradation and biomedical applications. Chem Soc Rev 2012;41:2193-221.
48. Pashuck ET, Duchet BJ, Hansel CS, Maynard SA, Chow LW, Stevens MM. Controlled sub-nanometer epitope spacing in a threedimensional self-assembled peptide hydrogel. ACS Nano 2016;10:11096-104.
49. Li J, Zhan Z, Du X, Wang J, Hong B, Xu B. Selection of secondary structures of heterotypic supramolecular peptide assemblies by an enzymatic reaction. Angew Chem Int Ed Engl 2018;57:11716-21.
50. Shi J, Fichman G, Schneider JP. Enzymatic control of the conformational landscape of self-assembling peptides. Angew Chem Int Ed Engl 2018;57:11188-92.
51. Zhou J, Du X, Gao Y, Shi J, Xu B. Aromatic-aromatic interactions enhance interfiber contacts for enzymatic formation of a spontaneously aligned supramolecular hydrogel. J Am Chem Soc 2014;136:2970-3.
52. Chen ZP, Xing L, Fan Q, Cheetham AG, Lin R, Holt B, et al. Drugbearing supramolecular filament hydrogels as anti-inflammatory agents. Theranostics 2017;7:2003-14.
53. Cheetham AG, Zhang PC, Lin YA, Lock LL, Cui HG. Supramolecular nanostructures formed by anticancer drug assembly. J Am Chem Soc 2013;135:2907-10.
54. Hu C, Liu X, Ran W, Meng J, Zhai YH, Zhang PC, et al. Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Biomaterials 2017;144:60-72.
55. Edelbrock AN, Àlvarez Z, Simkin D, Fyrner T, Chin SM, Sato K, et al. Supramolecular nanostructure activates TrkB receptor signaling of neuronal cells by mimicking brain-derived neurotrophic factor. Nano Lett 2018;18:6237-47.
56. Freeman R, Han M, Ávarez Z, Lewis JA, Wester JR, Stephanopoulos N, et al. Reversible self-assembly of superstructured networks. Science 2018;362:808-13.
57. Li IC, Hartgerink JD. Covalent capture of aligned self-assembling nanofibers. J Am Chem Soc 2017;139:8044-50.
58. Lock LL, Lo YG, Mao XP, Chen HW, Staedtke V, Bai RY, et al. Onecomponent supramolecular filament hydrogels as theranostic label-free magnetic resonance imaging agents. ACS Nano 2017;11:797-805.
59. Jensen G, Morrill C, Huang Y. 3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharm Sin B 2018;8:756-66.
60. Wagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm Sin B 2018;8:147-64.
61. Zhai Y, Ran W, Su J, Lang T, Meng J, Wang G, et al. Traceable bioinspired nanoparticle for the treatment of metastatic breast cancer via NIR-trigged intracellular delivery of methylene blue and cisplatin. Adv Mater 2018;30:1802378.
62. Zhang P, Cheetham AG, Lin YA, Cui H. Self-Assembled Tat nanofibers as effective drug carrier and transporter. ACS Nano 2013;7:5965-77.
63. Zaidi S, Hassan MI, Islam A, Ahmad F. The role of key residues in structure, function, and stability of cytochrome-c. Cell Mol Life Sci 2014;71:229-55.
64. Creusot RJ, Yaghoubi SS, Chang P, Chia J, Contag CH, Gambhir SS, et al. Lymphoid-tissue-specific homing of bone-marrow-derived dendritic cells. Blood 2009;113:6638-47.
65. Talmadge JE, Singh RK, Fidler IJ, Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 2007;170:793-804.
66. Wang Q, Zhang P, Li Z, Feng X, Lv C, Zhang H, et al. Evaluation of polymer nanoformulations in hepatoma therapy by established rodent models. Theranostics 2019;9:1426-52.
Similar articles:
1.Lihua Chen, Xiaoting Zhao, Jia Cai, Yongmei Guan, Sen Wang, Hongning Liu, Weifeng Zhu, Junsong Li.Triptolide-loaded microemulsion-based hydrogels:physical properties and percutaneous permeability[J]. Acta Pharmaceutica Sinica B, 2013,3(3): 185-192