Annual reviews
Yuhua Li, Qiang Meng, Mengbi Yang, Dongyang Liu, Xiangyu Hou, Lan Tang, Xin Wang, Yuanfeng Lyu, Xiaoyan Chen, Kexin Liu, Ai-Ming Yu, Zhong Zuo, Huichang Bi. Current trends in drug metabolism and pharmacokinetics[J]. Acta Pharmaceutica Sinica B, 2019, 9(6): 1113-1144

Current trends in drug metabolism and pharmacokinetics
Yuhua Lia,b, Qiang Mengc, Mengbi Yanga, Dongyang Liue, Xiangyu Houf, Lan Tangg, Xin Wangh, Yuanfeng Lyud, Xiaoyan Chenf, Kexin Liuc, Ai-Ming Yui, Zhong Zuod, Huichang Bia
a School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China;
b The First Affiliated Hospital of Nanchang University, Nanchang 330006, China;
c College of Pharmacy, Dalian Medical University, Dalian 116044, China;
d School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China;
e Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China;
f Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
g School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
h School of Life Sciences, East China Normal University, Shanghai 200241, China;
i UC Davis School of Medicine, Sacramento, CA 95817, USA
Abstract:
Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects:(1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice.
Key words:    Pharmacokinetics    Drug metabolism    Drugedrug interactions    Modeling    Metabolizing enzymes    Transporters    Nuclear receptors    Noncoding RNAs   
Received: 2019-04-07     Revised: 2019-08-23
DOI: 10.1016/j.apsb.2019.10.001
Funds: This work was supported by National Natural Science Foundation of China (grants:81573489, 81522047, 81730103, 81320108027, 81660618, and 81773808), the National Key Research and Development Program (grant:2017YFE0109900 and 2017YFC0909303, China), the 111 project (grant:B16047, China), the Key Laboratory Foundation of Guangdong Province (grant:2017B030314030, China), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01Y093, China), National Engineering and Technology Research Center for New drug Druggability Evaluation (Seed Program of Guangdong Province, 2017B090903004, China), Natural Science Foundation of Guangdong (grant:2017A030311018 and 2015A030313124, China), and National Institutes of Health (grants No. R01CA225958 and R01GM113888 to Ai-Ming Yu, USA).
Corresponding author: Xiaoyan Chen, Kexin Liu, Ai-Ming Yu, Zhong Zuo, Huichang Bi     Email:xychen@simm.ac.cn;liukexin89@163.com;aimyu@ucdavis.edu;joanzuo@cuhk.edu.hk;bihchang@mail.sysu.edu.cn
Author description:
Service
PDF(KB) Free
Print
0
Authors
Yuhua Li
Qiang Meng
Mengbi Yang
Dongyang Liu
Xiangyu Hou
Lan Tang
Xin Wang
Yuanfeng Lyu
Xiaoyan Chen
Kexin Liu
Ai-Ming Yu
Zhong Zuo
Huichang Bi

References:
1. Currie GM. Pharmacology, part 2: introduction to pharmacokinetics. J Nucl Med Technol 2018;46:221-30.
2. Yan R, Yang Y, Chen Y. Pharmacokinetics of Chinese medicines: strategies and perspectives. Chin Med 2018;13:24.
3. Gan J, Ma S, Zhang D. Non-cytochrome P450-mediated bioactivation and its toxicological relevance. Drug Metab Rev 2016;48: 473-501.
4. Bhattacharyya S, Sinha K, Sil PC. Cytochrome P450s: mechanisms and biological implications in drug metabolism and its interaction with oxidative stress. Curr Drug Metab 2014;15:719-42.
5. Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 2006;6:947-60.
6. Yu Z, Tian X, Peng Y, Sun Z, Wang C, Tang N, et al. Mitochondrial cytochrome P450 (CYP) 1B1 is responsible for melatonin-induced apoptosis in neural cancer cells. J Pineal Res 2018;65:e12478.
7. Ruwali M, Dhawan A, Pant MC, Rahman Q, Khurana SM, Parmar D. Clinical management of head and neck cancer cases: role of pharmacogenetics of CYP2 and GSTs. Oncol Res Treat 2016;39:221-6.
8. Wang X, Li J, Dong G, Yue J. The endogenous substrates of brain CYP2D. Eur J Pharmacol 2014;724:211-8.
9. Yi M, Cho SA, Min J, Kim DH, Shin JG, Lee SJ. Functional characterization of a common CYP4F11 genetic variant and identification of functionally defective CYP4F11 variants in erythromycin metabolism and 20-HETE synthesis. Arch Biochem Biophys 2017;620: 43-51.
10. Deng J, Guo L, Wu B. Circadian regulation of hepatic cytochrome P450 2a5 by peroxisome proliferator-activated receptor g. Drug Metab Dispos 2018;46:1538-45.
11. Cannady EA, Suico JG, Wang MD, Friedrich S, Rehmel JR, Nicholls SJ, et al. CYP-mediated drugedrug interactions with evacetrapib, an investigational CETP inhibitor: in vitro prediction and clinical outcome. Br J Clin Pharmacol 2015;80:1388-98.
12. Siu EC, Tyndale RF. Selegiline is a mechanism-based inactivator of CYP2A6 inhibiting nicotine metabolism in humans and mice. J Pharmacol Exp Ther 2008;324:992-9.
13. Pelkonen O, Rautio A, Raunio H, Pasanen M. CYP2A6: a human coumarin 7-hydroxylase. Toxicology 2000;144:139-47.
14. He XY, Shen J, Ding X, Lu AY, Hong JY. Identification of critical amino acid residues of human CYP2A13 for the metabolic activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobaccospecific carcinogen. Drug Metab Dispos 2004;32:1516-21.
15. Li L, Carratt S, Hartog M, Kovalchuk N, Jia K, Wang Y, et al. Human CYP2A13 and CYP2F1 mediate naphthalene toxicity in the lung and nasal mucosa of CYP2A13/2F1-humanized mice. Environ Health Perspect 2017;125:067004.
16. Xu M, Hao H, Jiang L, Long F, Wei Y, Ji H, et al. In vitro inhibitory effects of ethanol extract of Danshen (Salvia miltiorrhiza) and its components on the catalytic activity of soluble epoxide hydrolase. Phytomedicine 2015;22:444-51.
17. Xie C, Gao X, Sun D, Zhang Y, Krausz KW, Qin X, et al. Metabolic profiling of the novel hypoxia-inducible factor 2α inhibitor PT2385 in vivo and in vitro. Drug Metab Dispos 2018;46:336-45.
18. Zhao H, Li S, Yang Z, Peng Y, Chen X, Zheng J. Identification of ketene-reactive intermediate of erlotinib possibly responsible for inactivation of P450 enzymes. Drug Metab Dispos 2018;46: 442-50.
19. Liu L, Cao X, Li T, Li X. Effects of catalpol on the activity of human liver cytochrome P450 enzymes. Xenobiotica 2019;49:1289-95.
20. Yim D, Kim MJ, Shin Y, Lee SJ, Shin JG, Kim DH. Inhibition of cytochrome P450 activities by Sophora flavescens extract and its prenylated flavonoids in human liver microsomes. Evid Based Complement Alternat Med 2019;2019:2673769.
21. Chen P, Li D, Chen Y, Sun J, Fu K, Guan L, et al. p53-mediated regulation of bile acid disposition attenuates cholic acid-induced cholestasis in mice. Br J Pharmacol 2017;174:4345-61.
22. Showande SJ, Fakeye TO, Kajula M, Hokkanen J, Tolonen A. Potential inhibition of major human cytochrome P450 isoenzymes by selected tropical medicinal herbs-Implication for herbedrug interactions. Food Sci Nutr 2019;7:44-55.
23. Alnaqeeb M, Mansor KA, Mallah EM, Ghanim BY, Idkaidek N, Qinna NA. Critical pharmacokinetic and pharmacodynamic drugherb interactions in rats between warfarin and pomegranate peel or guava leaves extracts. BMC Complement Altern Med 2019;19:29.
24. Yang J, He MM, Niu W, Wrighton SA, Li L, Liu Y, et al. Metabolic capabilities of cytochrome P450 enzymes in Chinese liver microsomes compared with those in Caucasian liver microsomes. Br J Clin Pharmacol 2012;73:268-84.
25. Gao N, Tian X, Fang Y, Zhou J, Zhang H, Wen Q, et al. Gene polymorphisms and contents of cytochrome P450s have only limited effects on metabolic activities in human liver microsomes. Eur J Pharm Sci 2016;92:86-97.
26. Li GF, Zheng QS, Yu Y, Zhong W, Zhou HH, Qiu F, et al. Impact of ethnicity-specific hepatic microsomal scaling factor, liver weight, and cytochrome P450 (CYP) 1A2 content on physiologically based prediction of CYP1A2-mediated pharmacokinetics in young and elderly Chinese adults. Clin Pharmacokinet 2019;58:927-41.
27. Kaminsky LS, Zhang QY. The small intestine as a xenobioticmetabolizing organ. Drug Metab Dispos 2003;31:1520-5.
28. Knights KM, Rowland A, Miners JQ. Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br J Clin Pharmacol 2013;76:587-602.
29. Edeogu CO, Kalu ME, Famurewa AC, Asogwa NT, Onyeji GN, Ikpemo KO. Nephroprotective effect of Moringa oleifera seed oil on gentamicin-induced nephrotoxicity in rats: biochemical evaluation of antioxidant, anti-inflammatory, and antiapoptotic pathways. J Am Coll Nutr 2019;12:1-9.
30. Liu H, Chen M, Yin H, Hu P, Wang Y, Liu F, et al. Exploration of the hepatoprotective chemical base of an orally administered herbal formulation (YCHT) in normal and CCl4-intoxicated liver injury rats. Part 1: metabolic profiles from the liver-centric perspective. J Ethnopharmacol 2019;237:81-91.
31. Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 2008;4:697-720.
32. Miyajima A, Sakemi-Hoshikawa K, Usami M, Mitsunaga K, Irie T, Ohno Y, et al. Thyrotoxic rubber antioxidants, 2-mercaptobenzimidazole and its methyl derivatives, cause both inhibition and induction of drugmetabolizing activity in rat liver microsomes after repeated oral administration. Biochem Biophys Res Commun 2017;492:116-20.
33. Di Paolo ML, Cozza G, Milelli A, Zonta F, Sarno S, Minniti E, et al. Benextramine and derivatives as novel human monoamine oxidases inhibitors: an integrated approach. FEBS J 2019. Available from: https://doi.org/10.1111/febs.14994.
34. Tao D, Wang Y, Bao XQ, Yang BB, Gao F, Wang L, et al. Discovery of coumarin Mannich base derivatives as multifunctional agents against monoamine oxidase B and neuroinflammation for the treatment of Parkinson’s disease. Eur J Med Chem 2019;173: 203-12.
35. Foti RS, Dalvie DK. Cytochrome P450 and non-cytochrome P450 oxidative metabolism: contributions to the pharmacokinetics, safety, and efficacy of xenobiotics. Drug Metab Dispos 2016;44:1229-45.
36. Johnson P, Loganathan C, Iruthayaraj A, Poomani K, Thayumanavan P. S-allyl cysteine as potent anti-gout drug: insight into the xanthine oxidase inhibition and anti-inflammatory activity. Biochimie 2018;154:1-9.
37. Zhang HF, Li ZH, Liu JY, Liu TT, Wang P, Fang Y, et al. Correlation of cytochrome P450 oxidoreductase expression with the expression of 10 isoforms of cytochrome P450 in human liver. Drug Metab Dispos 2016;44:1193-200.
38. Mano EC, Scott AL, Honorio KM. UDP-glucuronosyltransferases: structure, function and drug design studies. Curr Med Chem 2018;25: 3247-55.
39. Mazerska Z, Mróz A, Pawlowska M, Augustin E. The role of glucuronidation in drug resistance. Pharmacol Ther 2016;159:35-55.
40. Nair PC, Meech R, Mackenzie PI, McKinnon RA, Miners JO. Insights into the UDP-sugar selectivities of human UDPglycosyltransferases (UGT): a molecular modeling perspective. Drug Metab Rev 2015;47:335-45.
41. Qi C, Fu J, Zhao H, Xing H, Dong D, Wu B. Identification of UGTs and BCRP as potential pharmacokinetic determinants of the natural flavonoid alpinetin. Xenobiotica 2019;49:276-83.
42. Pettersson Bergstrand M, Richter LH, Maurer HH, Wagmann L, Meyer MR. In vitro glucuronidation of designer benzodiazepines by human UDP-glucuronyltransferases. Drug Test Anal 2019;11:45-50.
43. Hu DG, Meech R, McKinnon RA, Mackenzie PI. Transcriptional regulation of human UDP-glucuronosyltransferase genes. Drug Metab Rev 2014;46:421-58.
44. Gao R, Liu M, Chen Y, Xia C, Zhang H, Xiong Y, et al. Identification and characterization of human UDP-glucuronosyltransferases responsible for the in vitro glucuronidation of ursolic acid. Drug Metab Pharmacokinet 2016;31:261-8.
45. Jeong ES, Kim YW, Kim HJ, Shin HJ, Shin JG, Kim KH, et al. Glucuronidation of fimasartan, a new angiotensin receptor antagonist, is mainly mediated by UGT1A3. Xenobiotica 2015;45:10-8.
46. Wang H, Cao G, Wang G, Hao H. Regulation of mammalian UDPglucuronosyltransferases. Curr Drug Metab 2018;19:490-501.
47. Zhou X, Zhao Y, Wang J, Wang X, Chen C, Yin D, et al. Resveratrol represses estrogen-induced mammary carcinogenesis through NRF2-UGT1A8-estrogen metabolic axis activation. Biochem Pharmacol 2018;155:252-63.
48. Wu L, Chen Y, Liu H, Zhan Z, Liang Z, Zhang T, et al. Emodin-induced hepatotoxicity was exacerbated by probenecid through inhibiting UGTs and MRP2. Toxicol Appl Pharmacol 2018;359:91-101.
49. Zhou Y, Cao S, Wang Y, Xu P, Yan J, Bin W, et al. Berberine metabolites could induce low density lipoprotein receptor up-regulation to exert lipid-lowering effects in human hepatoma cells. Fitoterapia 2014;92:230-7.
50. Hwang DK, Kim JH, Shin Y, Choi WG, Kim S, Cho YY, et al. Identification of catalposide metabolites in human liver and intestinal preparations and characterization of the relevant sulfotransferase, UDP-glucuronosyltransferase, and carboxylesterase enzymes. Pharmaceutics 2019;11:355.
51. Wassenaar CA, Conti DV, Das S, Chen P, Cook EH, Ratain MJ, et al. UGT1A and UGT2B genetic variation alters nicotine and nitrosamine glucuronidation in european and african american smokers. Cancer Epidemiol Biomarkers Prev 2015;24:94-104.
52. Suh HJ, Yoon SH, Yu KS, Cho JY, Park SI, Lee E, et al. The genetic polymorphism UGT1A4*3 is associated with low posaconazole plasma concentrations in hematological malignancy patients receiving the oral suspension. Antimicrob Agents Chemother 2018;62. e02230-17.
53. Zhang X, Yin JF, Zhang J, Kong SJ, Zhang HY, Chen XM. UGT1A1*6 polymorphisms are correlated with irinotecan-induced neutropenia: a systematic review and meta-analysis. Cancer Chemother Pharmacol 2017;80:135-49.
54. Suiko M, Kurogi K, Hashiguchi T, Sakakibara Y, Liu MC. Updated perspectives on the cytosolic sulfotransferases (SULTs) and SULTmediated sulfation. Biosci Biotechnol Biochem 2016;81:63-72.
55. Wang S, Yuan X, Lu D, Guo L, Wu B. Farnesoid X receptor regulates SULT1-1 expression through inhibition of PGC1α binding to HNF4α. Biochem Pharmacol 2017;145:202-9.
56. Falany CN, Rohn-Glowacki KJ. SULT2B1: unique properties and characteristics of a hydroxysteroid sulfotransferase family. Drug Metab Rev 2013;45:388-400.
57. Sun J, Wen Y, Zhou Y, Jiang Y, Chen Y, Zhang H, et al. p53 attenuates acetaminophen-induced hepatotoxicity by regulating drugmetabolizing enzymes and transporter expression. Cell Death Dis 2018;9:536.
58. Li R, Liu F, Chang Y, Ma X, Li M, Li C, et al. Glutathione Stransferase A1 (GSTA1) as a marker of acetaminophen-induced hepatocyte injury in vitro. Toxicol Mech Methods 2017;27:401-7.
59. Yang Y, Huycke MM, Herman TS, Wang X. Glutathione S-transferase alpha 4 induction by activator protein 1 in colorectal cancer. Oncogene 2016;35:5795-806.
60. Yi M, Shin JG, Lee SJ. Expression of CYP4V2 in human THP1 macrophages and its transcriptional regulation by peroxisome proliferator-activated receptor gamma. Toxicol Appl Pharmacol 2017;330:100-6.
61. Jeong SJ, Park JG, Kim S, Kweon HY, Seo S, Na DS, et al. Extract of Rhus verniciflua stokes protects the diet-induced hyperlipidemia in mice. Arch Pharm Res 2015;38:2049-58.
62. Graham A. Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radic Biol Med 2015;89:982-92.
63. Saini SP, Zhang B, Niu Y, Jiang M, Gao J, Zhai Y, et al. Activation of liver X receptor increases acetaminophen clearance and prevents its toxicity in mice. Hepatology 2011;54:2208-17.
64. Kalthoff S, Winkler A, Freiberg N, Manns MP, Strassburg CP. Gender matters: estrogen receptor alpha (ERα) and histone deacetylase (HDAC) 1 and 2 control the gender-specific transcriptional regulation of human uridine diphosphate glucuronosyltransferases genes (UGT1A). J Hepatol 2013;59:797-804.
65. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001;11:1156-66.
66. Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res 2009;26: 2039-54.
67. Kota BP, Tran VH, Allen J, Bebawy M, Roufogalis BD. Characterization of PXR mediated P-glycoprotein regulation in intestinal LS174T cells. Pharmacol Res 2010;62:426-31.
68. Lopes-Rodrigues V, Seca H, Sousa D, Sousa E, Lima RT, Vasconcelos MH. The network of P-glycoprotein and microRNAs interactions. Int J Cancer 2014;135:253-63.
69. Sun Y, Wang C, Meng Q, Liu Z, Huo X, Sun P, et al. Targeting Pglycoprotein and SORCIN: dihydromyricetin strengthens antiproliferative efficiency of adriamycin via MAPK/ERK and Ca2+-mediated apoptosis pathways in MCF-7/ADR and K562/ADR. J Cell Physiol 2018;233:3066-79.
70. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018;18:452-64.
71. Rives ML, Javitch JA, Wickenden AD. Potentiating SLC transporter activity: emerging drug discovery opportunities. Biochem Pharmacol 2017;135:1-11.
72. Rocha KC, Pereira BM, Rodrigues AC. An update on efflux and uptake transporters as determinants of statin response. Expert Opin Drug Metab Toxicol 2018;14:613-24.
73. Zakeri-Milani P, Valizadeh H. Intestinal transporters: enhanced absorption through P-glycoprotein-related drug interactions. Expert Opin Drug Metab Toxicol 2014;10:859-71.
74. Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. Intestinal drug interactions mediated by OATPs: a systematic review of preclinical and clinical findings. J Pharm Sci 2017;106:2312-25.
75. Oostendorp RL, Beijnen JH, Schellens JH. The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat Rev 2009;35:137-47.
76. Cheng Z, VanPelt J, Bergstrom A, Bethel C, Katko A, Miller C, et al. A noncanonical metal center drives the activity of the Sediminispirochaeta smaragdinae metallo-β-lactamase SPS-1. Biochemistry 2018;57:5218-29.
77. Zhang J, Wang C, Liu Q, Meng Q, Cang J, Sun H, et al. Pharmacokinetic interaction between JBP485 and cephalexin in rats. Drug Metab Dispos 2010;38:930-8.
78. Cang J, Zhang J, Wang C, Liu Q, Meng Q, Wang D, et al. Pharmacokinetics and mechanism of intestinal absorption of JBP485 in rats. Drug Metab Pharmacokinet 2010;25:500-7.
79. Nieto Montesinos R, Béduneau A, Pellequer Y, Lamprecht A. Delivery of P-glycoprotein substrates using chemosensitizers and nanotechnology for selective and efficient therapeutic outcomes. J Control Release 2012;161:50-61.
80. Pedersen KE, Christiansen BD, Klitgaard NA, Nielsen-Kudsk F. Effect of quinidine on digoxin bioavailability. Eur J Clin Pharmacol 1983;24:41-7.
81. Huo X, Liu Q, Wang C, Meng Q, Sun H, Peng J, et al. Enhancement effect of P-gp inhibitors on the intestinal absorption and antiproliferative activity of bestatin. Eur J Pharm Sci 2013;50:420-8.
82. Yigitaslan S, Erol K, Cengelli C. The effect of P-glycoprotein inhibition and activation on the absorption and serum levels of cyclosporine and tacrolimus in rats. Adv Clin Exp Med 2016;25: 237-42.
83. Karibe T, Imaoka T, Abe K, Ando O. Curcumin as an in vivo selective intestinal breast cancer resistance protein inhibitor in cynomolgus monkeys. Drug Metab Dispos 2018;46:667-79.
84. Yamagata T, Kusuhara H, Morishita M, Takayama K, Benameur H, Sugiyama Y. Effect of excipients on breast cancer resistance protein substrate uptake activity. J Control Release 2007;124:1-5.
85. Jia Y, Liu Z, Wang C, Meng Q, Huo X, Liu Q, et al. P-gp, MRP2 and OAT1/OAT3 mediate the drugedrug interaction between resveratrol and methotrexate. Toxicol Appl Pharmacol 2016;306:27-35.
86. Wang C, Huo X, Wang C, Meng Q, Liu Z, Sun P, et al. Organic anion-transporting polypeptide and efflux transporter-mediated hepatic uptake and biliary excretion of cilostazol and its metabolites in Rats and humans. J Pharm Sci 2017;106:2515-23.
87. Watanabe T, Kusuhara H, Maeda K, Shitara Y, Sugiyama Y. Physiologically based pharmacokinetic modeling to predict transportermediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther 2009;328:652-62.
88. De Lange EC, Vd Berg DJ, Bellanti F, Voskuyl R, Syvänen S. Pglycoprotein protein expression versus functionality at the bloodebrain barrier using immunohistochemistry, microdialysis and mathematical modeling. Eur J Pharm Sci 2018;124:61-70.
89. Hartz AM, Zhong Y, Shen AN, Abner EL, Bauer B. Preventing P-gp ubiquitination lowers Aβ brain levels in an Alzheimer’s disease mouse model. Front Aging Neurosci 2018;10:186.
90. Ohtsuki S, Asaba H, Takanaga H, Deguchi T, Hosoya KI, Otagiri M, et al. Role of bloodebrain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem 2002;83:57-66.
91. Matsson EM, Eriksson UG, Palm JE, Artursson P, Karlgren M, Lazorova L, et al. Combined in vitroein vivo approach to assess the hepatobiliary disposition of a novel oral thrombin inhibitor. Mol Pharm 2013;10:4252-62.
92. Notenboom S, Weigand KM, Proost JH, van Lipzig MM, van de Steeg E, van den Broek PH, et al. Development of a mechanistic biokinetic model for hepatic bile acid handling to predict possible cholestatic effects of drugs. Eur J Pharm Sci 2018;115:175-84.
93. Zhu Y, Meng Q, Wang C, Liu Q, Sun H, Kaku T, et al. Organic anion transporters involved in the excretion of bestatin in the kidney. Peptides 2012;33:265-71.
94. Guo X, Meng Q, Liu Q, Wang C, Mao Q, Sun H, et al. Peptide cotransporter 1 in intestine and organic anion transporters in kidney are targets of interaction between JBP485 and lisinopril in rats. Drug Metab Pharmacokinet 2012;27:232-41.
95. Ye J, Liu Q, Wang C, Meng Q, Peng J, Sun H, et al. Inhibitory effect of JBP485 on renal excretion of acyclovir by the inhibition of OAT1 and OAT3. Eur J Pharm Sci 2012;47:341-6.
96. Xu Q, Wang C, Meng Q, Liu Q, Sun H, Peng J, et al. OAT1 and OAT3: targets of drugedrug interaction between entecavir and JBP485. Eur J Pharm Sci 2013;48:650-7.
97. Takeda M, Tojo A, Sekine T, Hosoyamada M, Kanai Y, Endou H. Role of organic anion transporter 1 (OAT1) in cephaloridine (CER)-induced nephrotoxicity. Kidney Int 1999;56:2128-36.
98. Jung KY, Takeda M, Shimoda M, Narikawa S, Tojo A, Kim DK, et al. Involvement of rat organic anion transporter 3 (rOAT3) in cephaloridine-induced nephrotoxicity: in comparison with rOAT1. Life Sci 2002;70:1861-74.
99. Müller F, Weitz D, Mertsch K, König J, Fromm MF. Importance of OCT2 and MATE1 for the cimetidine-metformin interaction: insights from investigations of polarized transport in single-and doubletransfected MDCK cells with a focus on perpetrator disposition. Mol Pharm 2018;15:3425-33.
100. El-Arabey AA. Dual function of OCT2 and MATE1 in cisplatin induced nephrotoxicity. Pharmacol Res 2017;119:493.
101. Zhu Y, Meng Q, Wang C, Liu Q, Huo X, Zhang A, et al. Methotrexate-bestatin interaction: involvement of P-glycoprotein and organic anion transporters in rats. Int J Pharm 2014;465:368-77.
102. Zhang R, Yang X, Li J, Wu J, Peng WX, Dong XQ, et al. Upregulation of rat renal cortical organic anion transporter (OAT1 and OAT3) expression in response to ischemia/reperfusion injury. Am J Nephrol 2008;28:772-83.
103. Mattick JS. RNA regulation: a new genetics?. Nat Rev Genet 2004;5: 316-23.
104. Yu AM, Tian Y, Tu MJ, Ho PY, Jilek JL. MicroRNA pharmacoepigenetics: posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy. Drug Metab Dispos 2016;44:308-19.
105. Yu AM, Ingelman-Sundberg M, Cherrington NJ, Aleksunes LM, Zanger UM, Xie W, et al. Regulation of drug metabolism and toxicity by multiple factors of genetics, epigenetics, lncRNAs, gut microbiota, and diseases: a meeting report of the 21st International Symposium on Microsomes and Drug Oxidations (MDO). Acta Pharm Sin B 2017;7:241-8.
106. Nakano M, Nakajima M. Current knowledge of microRNA-mediated regulation of drug metabolism in humans. Expert Opin Drug Metab Toxicol 2018;14:493-504.
107. Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 2006;66:9090-8.
108. Pan YZ, Gao W, Yu AM. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab Dispos 2009;37: 2112-7.
109. Li MM, Wang WP, Wu WJ, Huang M, Yu AM. Rapid production of novel pre-microRNA agent hsa-mir-27b in Escherichia coli using recombinant RNA technology for functional studies in mammalian cells. Drug Metab Dispos 2014;42:1791-5.
110. Li X, Tian Y, Tu MJ, Ho PY, Batra N, Yu AM. Bioengineered miR-27b-3p and miR-328-3p modulate drug metabolism and disposition via the regulation of target ADME gene expression. Acta Pharm Sin B 2019;9:639-47.
111. Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG, et al. Role of microRNA miR-27a and miR-451 in the regulation of MDR1/Pglycoprotein expression in human cancer cells. Biochem Pharmacol 2008;76:582-8.
112. Li Z, Hu S, Wang J, Cai J, Xiao L, Yu L, et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol 2010;119:125-30.
113. Feng DD, Zhang H, Zhang P, Zheng YS, Zhang XJ, Han BW, et al. Down-regulated miR-331-5p and miR-27a are associated with chemotherapy resistance and relapse in leukaemia. J Cell Mol Med 2011;15:2164-75.
114. Papageorgiou I, Court MH. Identification and validation of the microRNA response elements in the 3'-untranslated region of the UDP glucuronosyltransferase (UGT) 2B7 and 2B15 genes by a functional genomics approach. Biochem Pharmacol 2017;146:199-213.
115. Papageorgiou I, Court MH. Identification and validation of microRNAs directly regulating the UDP-glucuronosyltransferase 1A subfamily enzymes by a functional genomics approach. Biochem Pharmacol 2017;137:93-106.
116. Dluzen DF, Sun D, Salzberg AC, Jones N, Bushey RT, Robertson GP, et al. Regulation of UDP-glucuronosyltransferase 1A1 expression and activity by microRNA 491-3p. J Pharmacol Exp Ther 2014;348: 465-77.
117. Wijayakumara DD, Hu DG, Meech R, McKinnon RA, Mackenzie PI. Regulation of human UGT2B15 and UGT2B17 by miR-376c in prostate cancer cell lines. J Pharmacol Exp Ther 2015;354:417-25.
118. Tatsumi N, Tokumitsu S, Nakano M, Fukami T, Nakajima M. miR-141-3p commonly regulates human UGT1A isoforms via different mechanisms. Drug Metab Pharmacokinet 2018;33:203-10.
119. Sutliff AK, Watson CJ, Chen G, Lazarus P. Regulation of UGT2A1 by miR-196a-5p and miR-196b-5p. J Pharmacol Exp Ther 2019;369: 234-43.
120. Yu D, Green B, Tolleson WH, Jin Y, Mei N, Guo Y, et al. MicroRNA hsa-miR-29a-3p modulates CYP2C19 in human liver cells. Biochem Pharmacol 2015;98:215-23.
121. Mencia N, Selga E, Noé V, Ciudad CJ. Underexpression of miR-224 in methotrexate resistant human colon cancer cells. Biochem Pharmacol 2011;82:1572-82.
122. Wang Y, Yu D, Tolleson WH, Yu LR, Green B, Zeng L, et al. A systematic evaluation of microRNAs in regulating human hepatic CYP2-1. Biochem Pharmacol 2017;138:174-84.
123. Chen Y, Zeng L, Wang Y, Tolleson WH, Knox B, Chen S, et al. The expression, induction and pharmacological activity of CYP1A2 are post-transcriptionally regulated by microRNA hsa-miR-132-5p. Biochem Pharmacol 2017;145:178-91.
124. Zeng L, Chen Y, Wang Y, Yu LR, Knox B, Chen J, et al. MicroRNA hsa-miR-370-3p suppresses the expression and induction of CYP2D6 by facilitating mRNA degradation. Biochem Pharmacol 2017;140: 139-49.
125. Yu D, Wu L, Gill P, Tolleson WH, Chen S, Sun J, et al. Multiple microRNAs function as self-protective modules in acetaminopheninduced hepatotoxicity in humans. Arch Toxicol 2018;92:845-58.
126. Duan Z, Yu AM. Bioengineered non-coding RNA agent (BERA) in action. Bioengineered 2016;7:411-7.
127. Ho PY, Yu AM. Bioengineering of noncoding RNAs for research agents and therapeutics. Wiley Interdiscip Rev RNA 2016;7:186-97.
128. Yu AM, Jian C, Yu AH, Tu MJ. RNA therapy: are we using the right molecules?. Pharmacol Ther 2019;196:91-104.
129. Chen QX, Wang WP, Zeng S, Urayama S, Yu AM. A general approach to high-yield biosynthesis of chimeric RNAs bearing various types of functional small RNAs for broad applications. Nucleic Acids Res 2015;43:3857-69.
130. Li MM, Addepalli B, Tu MJ, Chen QX, Wang WP, Limbach PA, et al. Chimeric microRNA-1291 biosynthesized efficiently in Escherichia coli is effective to reduce target gene expression in human carcinoma cells and improve chemosensitivity. Drug Metab Dispos 2015;43:1129-36.
131. Ho PY, Duan Z, Batra N, Jilek JL, Tu MJ, Qiu JX, et al. Bioengineered noncoding RNAs selectively change cellular miRNome profiles for cancer therapy. J Pharmacol Exp Ther 2018;365:494-506.
132. Li PC, Tu MJ, Ho PY, Jilek JL, Duan Z, Zhang QY, et al. Bioengineered NRF2-siRNA is effective to interfere with NRF2 pathways and improve chemosensitivity of human cancer cells. Drug Metab Dispos 2018;46:2-10.
133. Wang WP, Ho PY, Chen QX, Addepalli B, Limbach PA, Li MM, et al. Bioengineering novel chimeric microRNA-34a for prodrug cancer therapy: high-yield expression and purification, and structural and functional characterization. J Pharmacol Exp Ther 2015;354:131-41.
134. Jilek JL, Tian Y, Yu AM. Effects of microRNA-34a on the pharmacokinetics of cytochrome P450 probe drugs in mice. Drug Metab Dispos 2017;45:512-22.
135. Zhao Y, Tu MJ, Yu YF, Wang WP, Chen QX, Qiu JX, et al. Combination therapy with bioengineered miR-34a prodrug and doxorubicin synergistically suppresses osteosarcoma growth. Biochem Pharmacol 2015;98:602-13.
136. Jian C, Tu MJ, Ho PY, Duan Z, Zhang Q, Qiu JX, et al. Co-targeting of DNA, RNA, and protein molecules provides optimal outcomes for treating osteosarcoma and pulmonary metastasis in spontaneous and experimental metastasis mouse models. Oncotarget 2017;8: 30742-55.
137. Jilek JL, Zhang QY, Tu MJ, Ho PY, Duan Z, Qiu JX, et al. Bioengineered Let-7c inhibits orthotopic hepatocellular carcinoma and improves overall survival with minimal immunogenicity. Mol Ther Nucleic Acids 2019;14:498-508.
138. Tu MJ, Ho PY, Zhang QY, Jian C, Qiu JX, Kim EJ, et al. Bioengineered miRNA-1291 prodrug therapy in pancreatic cancer cells and patient-derived xenograft mouse models. Cancer Lett 2019;442: 82-90.
139. Alegre F, Ormonde AR, Snider KM, Woolard K, Yu AM, Wittenburg LA. A genetically engineered microRNA-34a prodrug demonstrates anti-tumor activity in a canine model of osteosarcoma. PLoS One 2018;13:e0209941.
140. Chen L, Bao Y, Piekos SC, Zhu K, Zhang L, Zhong XB. A transcriptional regulatory network containing nuclear receptors and long noncoding RNAs controls basal and drug-Induced expression of cytochrome P450s in hepaRG cells. Mol Pharmacol 2018;94:749-59.
141. Tsang WP, Kwok TT. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene 2007;26:4877-81.
142. Wang Y, Zhang D, Wu K, Zhao Q, Nie Y, Fan D. Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol 2014;34:3182-93.
143. Wang J, Ye C, Liu J, Hu Y. UCA1 confers paclitaxel resistance to ovarian cancer through miR-129/ABCB1 axis. Biochem Biophys Res Commun 2018;501:1034-40.
144. Han Z, Shi L. Long non-coding RNA LUCAT1 modulates methotrexate resistance in osteosarcoma via miR-200c/ABCB1 axis. Biochem Biophys Res Commun 2018;495:947-53.
145. Nakano M, Fukami T, Gotoh S, Nakajima M. A-to-I RNA editing upregulates human dihydrofolate reductase in breast cancer. J Biol Chem 2017;292:4873-84.
146. Nakano M, Fukami T, Gotoh S, Takamiya M, Aoki Y, Nakajima M. RNA editing modulates human hepatic aryl hydrocarbon receptor expression by creating microRNA recognition sequence. J Biol Chem 2016;291:894-903.
147. Nozaki K, Nakano M, Iwakami C, Fukami T, Nakajima M. RNA editing enzymes modulate the expression of hepatic CYP2B6, CYP2C8, and other cytochrome P450 isoforms. Drug Metab Dispos 2019;47:639e47.
148. Kannan B, Nagella AB, Sathia Prabhu A, Sasidharan GM, Ramesh AS, Madhugiri V. Incidence of potential drugedrug interactions in a limited and stereotyped prescription settingcomparison of two free online pharmacopoeias. Cureus 2016;8:e886.
149. Freedman MD. Drug interactions: classification and systematic approach. Am J Ther 1995;2:433e43.
150. U.S. Food and Drug Administration. In vitro metabolism- and transporter-mediated drugedrug interaction studies guidance for industry. 2017. Available from: https://www.fda.gov/regulatoryinformation/search-fda-guidance-documents/vitro-metabolism-andtransporter-mediated-drug-drug-interaction-studies-guidance-industry.
151. U.S. Food and Drug Administration. Clinical drug interaction studiesdstudy design, data analysis, and clinical implications guidance for industry. 2017. Available from: https://www.fda.gov/regulatoryinformation/search-fda-guidance-documents/clinical-druginteraction-studies-study-design-data-analysis-and-clinicalimplications-guidance.
152. Min JS, Bae SK. Prediction of drugedrug interaction potential using physiologically based pharmacokinetic modeling. Arch Pharm Res 2017;40:1356e79.
153. Chen XW, Sneed KB, Pan SY, Cao C, Kanwar JR, Chew H, et al. Herbedrug interactions and mechanistic and clinical considerations. Curr Drug Metab 2012;13:640e51.
154. Tsai HH, Lin HW, Simon Pickard A, Tsai HY, Mahady GB. Evaluation of documented drug interactions and contraindications associated with herbs and dietary supplements: a systematic literature review. Int J Clin Pract 2012;66:1056e78.
155. Ge B, Zhang Z, Zuo Z. Updates on the clinical evidenced herbwarfarin interactions. Evid Based Complement Alternat Med 2014; 2014:957362.
156. Lan K, Xie G, Jia W. Towards polypharmacokinetics: pharmacokinetics of multicomponent drugs and herbal medicines using a metabolomics approach. Evid Based Complement Alternat Med 2013;2013:819147.
157. Li C. Multi-compound pharmacokinetic research on Chinese herbal medicines: approach and methodology. China J Chin Mater Med 2017;42:607e17.
158. Zhang H, Bu F, Li L, Jiao Z, Ma G, Cai W, et al. Prediction of drugedrug interaction between tacrolimus and principal ingredients of wuzhi capsule in Chinese healthy volunteers using physiologically-based pharmacokinetic modelling. Basic Clin Pharmacol 2018;122:331e40.
159. Zhou H, Meibohm B. Drugedrug interactions for therapeutic biologics. New York: John Wiley & Sons; 2013.
160. Vugmeyster Y. Pharmacokinetics and toxicology of therapeutic proteins: advances and challenges. World J Biol Chem 2012;3: 73e92.
161. Dietrich U, Dürr R, Koch J. Peptides as drugs: from screening to application. Curr Pharm Biotechnol 2013;14:501e12.
162. Ferri N, Bellosta S, Baldessin L, Boccia D, Racagni G, Corsini A. Pharmacokinetics interactions of monoclonal antibodies. Pharmacol Res 2016;111:592e9.
163. Seitz K, Zhou H. Pharmacokinetic drugedrug interaction potentials for therapeutic monoclonal antibodies: reality check. J Clin Pharmacol 2007;47:1104e18.
164. Zhuang Y, Xu Z, Frederick B, de Vries DE, Ford JA, Keen M, et al. Golimumab pharmacokinetics after repeated subcutaneous and intravenous administrations in patients with rheumatoid arthritis and the effect of concomitant methotrexate: an open-label, randomized study. Clin Ther 2012;34:77e90.
165. Baert F, Noman M, Vermeire S, Van Assche G, D’Haens G, Carbonez A, et al. Influence of immunogenicity on the long-term efficacy of infliximab in crohn’s disease. N Engl J Med 2003;348: 601e8.
166. Pellegrino P, Perrotta C, Clementi E, Radice S. Vaccineedrug interactions: cytokines, cytochromes, and molecular mechanisms. Drug Saf 2015;38:781e7.
167. Schmitt C, Kuhn B, Zhang X, Kivitz AJ, Grange S. Diseaseedrugedrug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther 2011;89: 735e40.
168. Raaska K, Raitasuo V, Neuvonen P. Effect of influenza vaccination on serum clozapine and its main metabolite concentrations in patients with schizophrenia. Eur J Clin Pharmacol 2001;57: 705e8.
169. Xu Y, Hijazi Y, Wolf A, Wu B, Sun YN, Zhu M. Physiologically based pharmacokinetic model to assess the influence of blinatumomabmediated cytokine elevations on cytochrome P450 enzyme activity. CPT Pharmacometrics Syst Pharmacol 2015;4:507e15.
170. Jiang X, Zhuang Y, Xu Z, Wang W, Zhou H. Development of a physiologically based pharmacokinetic model to predict disease-mediated therapeutic proteinedrug interactions: modulation of multiple cytochrome P450 enzymes by interleukin-6. AAPS J 2016; 18:767e76.
171. Yang BB, Gillespie B, Smith B, Smith W, Lissmats A, Rudebeck M, et al. Pharmacokinetic and pharmacodynamic interactions between palifermin and heparin. J Clin Pharmacol 2015;55:1109e18.
172. U.S. Food & Drug Administration. Drugs@FDA: FDA Approved Drug Products. [accessed 2018 Aug 27]. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm.
173. Genovese MC, Cohen S, Moreland L, Lium D, Robbins S, Newmark R, et al. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum 2004;50: 1412e9.
174. Gingell R, Bridges JW, Williams RT. The role of the gut flora in the metabolism of prontosil and neoprontosil in the rat. Xenobiotica 1971;1:143e56.
175. Shu YZ, Kingston DG, Van Tassell RL, Wilkins TD. Metabolism of levamisole, an anti-colon cancer drug, by human intestinal bacteria. Xenobiotica 1991;21:737e50.
176. Bakke OM. Degradation of dopa by intestinal microorganisms in vitro. Acta Pharmacol Toxicol 1971;30:115e21.
177. Kim DH. Gut microbiota-mediated drug-antibiotic interactions. Drug Metab Dispos 2015;43:1581e9.
178. Strong HA, Renwick AG, George CF, Liu YF, Hill MJ. The reduction of sulphinpyrazone and sulindac by intestinal bacteria. Xenobiotica 1987;17:685e96.
179. Gingell R, Bridges JW. Intestinal azo-reduction and glucuronide conjugation of prontosil. Xenobiotica 1973;3:599e604.
180. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 2019;363:eaat9931.
181. Lehouritis P, Cummins J, Stanton M, Murphy CT, McCarthy FO, Reid G, et al. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci Rep 2015;5:14554.
182. Routy B, Le Chatelier E, Derosa L, Duong CP, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018;359:91e7.
183. Wilkinson EM, Ilhan ZE, Herbst-Kralovetz MM. Microbiota-drug interactions: impact on metabolism and efficacy of therapeutics. Maturitas 2018;112:53e63.
184. Fecal Microbiota Transplant (FMT) in melanoma patients. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03341143 [accessed 2018 Sep 27].
185. The effect of a probiotic strain on aspirin-induced GI damage. (PIPD). Available from: https://www.clinicaltrials.gov/ct2/show/NCT03228589 [accessed 2018 Sep 27].
186. Prevention of irinotecan induced diarrhea by probiotics. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02819960 [accessed 2018 Sep 27].
187. Zhang K, Chen D, Ma K, Wu X, Hao H, Jiang S. NAD(P)H: quinone oxidoreductase 1 (NQO1) as a therapeutic and diagnostic target in cancer. J Med Chem 2018;61:6983e7003.
188. Cheng X, Liu F, Liu H, Wang G, Hao H. Enhanced glycometabolism as a mechanism of NQO1 potentiated growth of NSCLC revealed by metabolomic profiling. Biochem Biophys Res Commun 2018;496: 31e6.
189. Staudinger JL. Disease, drug metabolism, and transporter interactions. Pharm Res 2013;30:2171e3.
190. Liu H, Xu X, Yang Z, Deng Y, Liu X, Xie L. Impaired function and expression of P-glycoprotein in bloodebrain barrier of streptozotocin-induced diabetic rats. Brain Res 2006;1123:245e52.
191. Liu YC, Liu HY, Yang HW, Wen T, Shang Y, Liu XD, et al. Impaired expression and function of breast cancer resistance protein (Bcrp) in brain cortex of streptozocin-induced diabetic rats. Biochem Pharmacol 2007;74:1766e72.
192. Mei D, Li J, Liu H, Liu L, Wang X, Guo H, et al. Induction of multidrug resistance-associated protein 2 in liver, intestine and kidney of streptozotocin-induced diabetic rats. Xenobiotica 2012;42: 709e18.
193. Shu N, Hu M, Ling Z, Liu P, Wang F, Xu P, et al. The enhanced atorvastatin hepatotoxicity in diabetic rats was partly attributed to the upregulated hepatic Cyp3a and SLCO1B1. Sci Rep 2016;6:33072.
194. Shu N, Hu M, Liu C, Zhang M, Ling Z, Zhang J, et al. Decreased exposure of atorvastatin in diabetic rats partly due to induction of hepatic Cyp3a and Oatp2. Xenobiotica 2016;46:875e81.
195. Xu D, Li F, Zhang M, Zhang J, Liu C, Hu MY, et al. Decreased exposure of simvastatin and simvastatin acid in a rat model of type 2 diabetes. Acta Pharmacol Sin 2014;35:1215e25.
196. Kim YC, Lee AK, Lee JH, Lee I, Lee DC, Kim SH, et al. Pharmacokinetics of theophylline in diabetes mellitus rats: induction of CYP1A2 and CYP2E1 on 1, 3-dimethyluric acid formation. Eur J Pharm Sci 2005;26:114e23.
197. Liu H, Liu L, Li J, Mei D, Duan R, Hu N, et al. Combined contributions of impaired hepatic CYP2C11 and intestinal breast cancer resistance protein activities and expression to increased oral glibenclamide exposure in rats with streptozotocin-induced diabetes mellitus. Drug Metab Dispos 2012;40:1104e12.
198. Hu N, Hu M, Duan R, Liu C, Guo H, Zhang M, et al. Increased levels of fatty acids contributed to induction of hepatic CYP3A4 activity induced by diabetesdin vitro evidence from HepG2 cell and Fa2N-4 cell lines. J Pharmacol Sci 2014;124:433e44.
199. Xie H, Sun S, Cheng X, Yan T, Zheng X, Li F, et al. Dysregulations of intestinal and colonic UDP-glucuronosyltransferases in rats with type 2 diabetes. Drug Metab Pharmacokinet 2013;28:427e34.
200. Li P, Lu Q, Jiang W, Pei X, Sun Y, Hao H, et al. Pharmacokinetics and pharmacodynamics of rhubarb anthraquinones extract in normal and disease rats. Biomed Pharmacother 2017;91:425e35.
201. Liu L, Miao M, Chen Y, Wang Z, Sun B, Liu X. Altered function and expression of ABC transporters at the bloodebrain barrier and increased brain distribution of phenobarbital in acute liver failure mice. Front Pharmacol 2018;9:190.
202. Wang F, Miao MX, Sun BB, Wang ZJ, Tang XG, Chen Y, et al. Acute liver failure enhances oral plasma exposure of zidovudine in rats by downregulation of hepatic UGT2B7 and intestinal P-gp. Acta Pharmacol Sin 2017;38:1554e65.
203. Frye RF, Schneider VM, Frye CS, Feldman AM. Plasma levels of TNF-α and IL-6 are inversely related to cytochrome P450-dependent drug metabolism in patients with congestive heart failure. J Card Fail 2002;8:315e9.
204. Dowling TC, Briglia AE, Fink JC, Hanes DS, Light PD, Stackiewicz L, et al. Characterization of hepatic cytochrome p4503A activity in patients with end-stage renal disease. Clin Pharmacol Ther 2003;73:427e34.
205. Dreisbach AW, Japa S, Gebrekal AB, Mowry SE, Lertora JJ, Kamath BL, et al. Cytochrome P4502C9 activity in end-stage renal disease. Clin Pharmacol Ther 2003;73:475e7.
206. Al Za’abi M, Shalaby A, Manoj P, Ali BH. The in vivo effects of adenine-induced chronic kidney disease on some renal and hepatic function and CYP450 metabolizing enzymes. Physiol Res 2017;66: 263e71.
207. Sukkummee W, Jittisak P, Wonganan P, Wittayalertpanya S, Chariyavilaskul P, Leelahavanichkul A. The prominent impairment of liver/intestinal cytochrome P450 and intestinal drug transporters in sepsis-induced acute kidney injury over acute and chronic renal ischemia, a mouse model comparison. Ren Fail 2019;41:314e25.
208. Lee SH, Lee SM. Suppression of hepatic cytochrome p450-mediated drug metabolism during the late stage of sepsis in rats. Shock 2005; 23:144e9.
209. Fox CS, Golden SH, Anderson C, Bray GA, Burke LE, de Boer IH, et al. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 2015;38:1777e803.
210. Liu L, Liu XD. Alterations in function and expression of ABC transporters at bloodebrain barrier under diabetes and the clinical significances. Front Pharmacol 2014;5:273.
211. Barnett CR, Gibson GG, Wolf CR, Flatt PR, Ioannides C. Induction of cytochrome P450III and P450IV family proteins in streptozotocineinduced diabetes. Biochem J 1990;268:765e9.
212. Hu N, Xie S, Liu L, Wang X, Pan X, Chen G, et al. Opposite effect of diabetes mellitus induced by streptozotocin on oral and intravenous pharmacokinetics of verapamil in rats. Drug Metab Dispos 2011;39: 419e25.
213. Guo Y, Hu B, Xie Y, Billiar TR, Sperry JL, Huang M, et al. Regulation of drug-metabolizing enzymes by local and systemic liver injuries. Expert Opin Drug Metab Toxicol 2016;12:245e51.
214. Li Y, Zhang J, Xu P, Sun B, Zhong Z, Liu C, et al. Acute liver failure impairs function and expression of breast cancer-resistant protein (BCRP) at rat bloodebrain barrier partly via ammonia-ROS-ERK1/2 activation. J Neurochem 2016;138:282e94.
215. Zhang L, Chu X, Wang H, Xie H, Guo C, Cao L, et al. Dysregulations of UDP-glucuronosyltransferases in rats with valproic acid and high fat diet induced fatty liver. Eur J Pharmacol 2013; 721:277e85.
216. Zhang K, Young C, Berger J. Administrative claims analysis of the relationship between warfarin use and risk of hemorrhage including drugedrug and drugedisease interactions. J Manag Care Pharm 2006;12:640e8.
217. Aspromonte N, Monitillo F, Puzzovivo A, Valle R, Caldarola P, Iacoviello M. Modulation of cardiac cytochrome P450 in patients with heart failure. Expert Opin Drug Metab Toxicol 2014;10: 327e39.
218. Tan FL, Moravec CS, Li J, Apperson-Hansen C, McCarthy PM, Young JB, et al. The gene expression fingerprint of human heart failure. Proc Natl Acad Sci U S A 2002;99:11387e92.
219. El-Kadi AO, Zordoky BN. Modulation of cardiac and hepatic cytochrome P450 enzymes during heart failure. Curr Drug Metab 2008; 9:122e8.
220. Lanchote VL, Ping WC, Santos SR. Influence of renal failure on cytochrome P450 activity in hypertensive patients using a “cocktail” of antipyrine and nifedipine. Eur J Clin Pharmacol 1996;50:83e9.
221. Guévin C, Michaud J, Naud J, Leblond FA, Pichette V. Downregulation of hepatic cytochrome p450 in chronic renal failure: role of uremic mediators. Br J Pharmacol 2002;137:1039e46.
222. Jacob A, Zhou M, Wu R, Wang P. The role of hepatic cytochrome P- 450 in sepsis. Int J Clin Exp Med 2009;2:203e11.
223. Park SW, Lee SM. The beneficial effect of Trolox on sepsis-induced hepatic drug metabolizing dysfunction. Arch Pharm Res 2004;27: 232e8.
224. Crawford JH, Yang S, Zhou M, Simms HH, Wang P. Down-regulation of hepatic CYP1A2 plays an important role in inflammatory responses in sepsis. Crit Care Med 2004;32:502e8.
225. Eum HA, Yeom DH, Lee SM. Role of nitric oxide in the inhibition of liver cytochrome P450 during sepsis. Nitric Oxide 2006;15:423e31.
226. Zhou M, Maitra SR, Wang P. The potential role of transcription factor aryl hydrocarbon receptor in downregulation of hepatic cytochrome P-450 during sepsis. Int J Mol Med 2008;21:423e8.
227. Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther 2012; 10:701e6.
228. Pea F. Plasma pharmacokinetics of antimicrobial agents in critically ill patients. Curr Clin Pharmacol 2013;8:5e12.
229. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 2014;14:498e509.
230. Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet 2011;50:99e110.
231. Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol 2012;9:208e14.
232. Ono C, Hsyu PH, Abbas R, Loi CM, Yamazaki S. Application of physiologically based pharmacokinetic modeling to the understanding of bosutinib pharmacokinetics: prediction of drugedrug and drugedisease interactions. Drug Metab Dispos 2017;45:390e8.
233. Xu R, Ge W, Jiang Q. Application of physiologically based pharmacokinetic modeling to the prediction of drugedrug and drugedisease interactions for rivaroxaban. Eur J Clin Pharmacol 2018;74:755e65.
234. Gao J, Xie W. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol Sci 2012;33:552e8.
235. He J, Gao J, Xu M, Ren S, Stefanovic-Racic M, O’Doherty RM, et al. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes 2013;62:1876e87.
236. He J, Nishida S, Xu M, Makishima M, Xie W. PXR prevents cholesterol gallstone disease by regulating biosynthesis and transport of bile salts. Gastroenterology 2011;140:2095e106.
237. Zeng H, Li D, Qin X, Chen P, Tan H, Zeng X, et al. Hepatoprotective effects of Schisandra sphenanthera extract against lithocholic acidinduced cholestasis in male mice are associated with activation of the pregnane X receptor pathway and promotion of liver regeneration. Drug Metab Dispos 2016;44:337e42.
238. Jiang Y, Feng D, Ma X, Fan S, Gao Y, Fu K, et al. Pregnane X receptor regulates liver size and liver cell fate by yes-associated protein activation in mice. Hepatology 2019;69:343e58.
239. Zhai Y, Pai HV, Zhou J, Amico JA, Vollmer RR, Xie W. Activation of pregnane X receptor disrupts glucocorticoid and mineralocorticoid homeostasis. Mol Endocrinol 2007;21:138e47.
240. Jiang M, Xie W. Role of the constitutive androstane receptor in obesity and type 2 diabetes: a case study of the endobiotic function of a xenobiotic receptor. Drug Metab Rev 2013;45:156e63.
241. Gao J, Yan J, Xu M, Ren S, Xie W. CAR Suppresses hepatic gluconeogenesis by facilitating the ubiquitination and degradation of PGC1α. Mol Endocrinol 2015;29:1558e70.
242. He J, Lee JH, Febbraio M, Xie W. The emerging roles of fatty acid translocase/CD36 and the aryl hydrocarbon receptor in fatty liver disease. Exp Biol Med (Maywood) 2011;236:1116e21.
243. He J, Hu B, Shi X, Weidert ER, Lu P, Xu M, et al. Activation of the aryl hydrocarbon receptor sensitizes mice to nonalcoholic steatohepatitis by deactivating mitochondrial sirtuin deacetylase Sirt3. Mol Cell Biol 2013;33:2047e55.
244. Gong H, He J, Lee JH, Mallick E, Gao X, Li S, et al. Activation of the liver X receptor prevents lipopolysaccharide-induced lung injury. J Biol Chem 2009;284:30113e21.
245. Zhao Z, Xu D, Li S, He B, Huang Y, Xu M, et al. Activation of liver X receptor attenuates oleic acid-induced acute respiratory distress syndrome. Am J Pathol 2016;186:2614e22.
246. Wang H, He Q, Wang G, Xu X, Hao H. FXR modulators for enterohepatic and metabolic diseases. Expert Opin Ther Pat 2018;28: 765e82.
247. Niu Y, Xu M, Slagle BL, Huang H, Li S, Guo GL, et al. Farnesoid X receptor ablation sensitizes mice to hepatitis b virus X proteininduced hepatocarcinogenesis. Hepatology 2017;65:893e906.
248. Chen P, Li J, Fan X, Zeng H, Deng R, Li D, et al. Oleanolic acid attenuates obstructive cholestasis in bile duct-ligated mice, possibly via activation of NRF2-MRPs and FXR antagonism. Eur J Pharmacol 2015;765:131e9.
249. Riviere JE, Gabrielsson J, Fink M, Mochel J. Mathematical modeling and simulation in animal health. Part I: moving beyond pharmacokinetics. J Vet Pharmacol Ther 2016;39:213e23.
250. Satoh D, Abe S, Kobayashi K, Nakajima Y, Oshimura M, Kazuki Y. Human and mouse artificial chromosome technologies for studies of pharmacokinetics and toxicokinetics. Drug Metab Pharmacokinet 2018;33:17e30.
251. Teorell T. Kinetics of distribution of substances administered to the body. I. The extra-vascular modes of administration. Arch Int Pharmacodyn Ther 1937;57:205e25.
252. Harrison LI, Gibaldi M. Physiologically based pharmacokinetic model for digoxin disposition in dogs and its preliminary application to humans. J Pharm Sci 1977;66:1679e83.
253. Meeting of the Pharmaceutical Science and Clinical Pharmacology Advisory Committee. 2012.
254. FDA. Physiologically based pharmacokinetic analyses-format and content guidance for industry. 2018. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/physiologically-based-pharmacokinetic-analyses-format-andcontent-guidance-industry.
255. EMA. Guideline on the qualification and reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation. 2016. Available from: https://www.ema.europa.eu/en/documents/scientificguideline/guideline-reporting-physiologically-basedpharmacokinetic-pbpk-modelling-simulation_en.pdf.
256. Zhao P. Towards consistent regulatory assessment of physiologicallybased pharmacokinetic modeling to support dosing recommendations. Washington, DC: FDA; 2017.
257. Liu D, Wang K, Ma G, Xiang X, Liu J, Zhao P, et al. The value and general consideration of pharmacometric study in new drug development. Chin J Clin Pharmacol Ther 2018;23:961e73.
258. Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 2011;51:45e73.
259. Hsueh CH, Hsu V, Pan Y, Zhao P. Predictive performance of physiologically-based pharmacokinetic models in predicting drugedrug interactions involving enzyme modulation. Clin Pharmacokinet 2018;57:1337e46.
260. Zhang L, Huang SM, Lesko LJ. Transporter-mediated drugedrug interactions. Clin Pharmacol Ther 2011;89:481e4.
261. Aghazadeh-Habashi A, Asghar W, Jamali F. Drugedisease interaction: effect of inflammation and nonsteroidal anti-inflammatory drugs on cytochrome p450 metabolites of arachidonic acid. J Pharm Sci 2018;107:756e63.
262. Tan ML, Yoshida K, Zhao P, Zhang L, Nolin TD, Piquette-Miller M, et al. Effect of chronic kidney disease on nonrenal elimination pathways: a systematic assessment of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and OATP. Clin Pharmacol Ther 2018;103:854e67.
263. Yoshida K, Budha N, Jin JY. Impact of physiologically based pharmacokinetic models on regulatory reviews and product labels: frequent utilization in the field of oncology. Clin Pharmacol Ther 2017;101:597e602.
264. Wagner C, Pan Y, Hsu V, Grillo JA, Zhang L, Reynolds KS, et al. Predicting the effect of cytochrome P450 inhibitors on substrate drugs: analysis of physiologically based pharmacokinetic modeling submissions to the US Food and Drug Administration. Clin Pharmacokinet 2015;54:117e27.
265. Wagner C, Pan Y, Hsu V, Sinha V, Zhao P. Predicting the effect of CYP3A inducers on the pharmacokinetics of substrate drugs using physiologically based pharmacokinetic (PBPK) modeling: an analysis of PBPK submissions to the US FDA. Clin Pharmacokinet 2016; 55:475e83.
266. Wagner C, Zhao P, Pan Y, Hsu V, Grillo J, Huang SM, et al. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: report of an FDA public workshop on PBPK. CPT Pharmacometrics Syst Pharmacol 2015;4:226e30.
267. Guo Y, Chu X, Parrott NJ, Brouwer KL, Hsu V, Nagar S, et al. Advancing predictions of tissue and intracellular drug concentrations using in vitro, imaging and physiologically based pharmacokinetic modeling approaches. Clin Pharmacol Ther 2018;104:865e89.
268. Pan Y, Hsu V, Grimstein M, Zhang L, Arya V, Sinha V, et al. The application of physiologically based pharmacokinetic modeling to predict the role of drug transporters: scientific and regulatory perspectives. J Clin Pharmacol 2016;56(Suppl 7):S122e31.
269. Nguyen TV, Ukairo O, Khetani SR, McVay M, Kanchagar C, Seghezzi W, et al. Establishment of a hepatocyte-kupffer cell coculture model for assessment of proinflammatory cytokine effects on metabolizing enzymes and drug transporters. Drug Metab Dispos 2015;43:774e85.
270. Yoshida K, Sun B, Zhang L, Zhao P, Abernethy DR, Nolin TD, et al. Systematic and quantitative assessment of the effect of chronic kidney disease on CYP2D6 and CYP3A4/5. Clin Pharmacol Ther 2016; 100:75e87.
271. Feng B, Varma MV. Evaluation and quantitative prediction of renal transporter-mediated drugedrug interactions. J Clin Pharmacol 2016;56(Suppl 7):S110e21.
272. Hsu V, de L T Vieira M, Zhao P, Zhang L, Zheng JH, Nordmark A, et al. Towards quantitation of the effects of renal impairment and probenecid inhibition on kidney uptake and efflux transporters, using physiologically based pharmacokinetic modelling and simulations. Clin Pharmacokinet 2014;53:283e93.
273. Edginton AN, Willmann S. Physiology-based simulations of a pathological condition: prediction of pharmacokinetics in patients with liver cirrhosis. Clin Pharmacokinet 2008;47:743e52.
274. Schlender JF, Meyer M, Thelen K, Krauss M, Willmann S, Eissing T, et al. Development of a whole-body physiologically based pharmacokinetic approach to assess the pharmacokinetics of drugs in elderly individuals. Clin Pharmacokinet 2016;55:1573e89.
275. Yellepeddi V, Rower J, Liu X, Kumar S, Rashid J, Sherwin CM. State-of-the-art review on physiologically based pharmacokinetic modeling in pediatric drug development. Clin Pharmacokinet 2019; 58:1e13.
276. Abduljalil K, Jamei M, Johnson TN. Fetal physiologically based pharmacokinetic models: systems information on the growth and composition of fetal organs. Clin Pharmacokinet 2019;58:235e62.
277. Xia B, Heimbach T, Gollen R, Nanavati C, He H. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy. AAPS J 2013;15:1012e24.
278. Lin L, Wong H. Predicting Oral Drug Absorption: mini review on physiologically-based pharmacokinetic models. Pharmaceutics 2017;9:41.
279. Mitra A. Maximizing the role of physiologically based oral absorption modeling in generic drug development. Clin Pharmacol Ther 2019;105:307e9.
280. Suarez-Sharp S, Cohen M, Kesisoglou F, Abend A, Marroum P, Delvadia P, et al. Applications of clinically relevant dissolution testing: workshop summary report. AAPS J 2018;20:93.
281. Tsume Y, Patel S, Fotaki N, Bergström C, Amidon GL, Brasseur JG, et al. In vivo predictive dissolution and simulation workshop report: facilitating the development of oral drug formulation and the prediction of oral bioperformance. AAPS J 2018;20:100.
282. Fang L, Kim MJ, Li Z, Wang Y, Diliberti CE, Au J, et al. Modelinformed drug development and review for generic products: summary of FDA public workshop. Clin Pharmacol Ther 2018;104:27e30.
283. Kesisoglou F, Mitra A. Application of absorption modeling in rational design of drug product under quality-by-design paradigm. AAPS J 2015;17:1224e36.
284. Babiskin AH, Zhang X. Application of physiologically based absorption modeling for amphetamine salts drug products in generic drug evaluation. J Pharm Sci 2015;104:3170e82.
285. Margolskee A, Darwich AS, Pepin X, Aarons L, Galetin A, RostamiHodjegan A, et al. IMI e oral biopharmaceutics tools projectevaluation of bottom-up PBPK prediction success part 2: an introduction to the simulation exercise and overview of results. Eur J Pharm Sci 2017;96:610e25.
286. Vuppugalla R, Marathe P, He H, Jones RD, Yates JW, Jones HM, et al. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 4: prediction of plasma concentration-time profiles in human from in vivo preclinical data by using the Wajima approach. J Pharm Sci 2011;100:4111e26.
287. Cao Y, Jusko WJ. Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Pharmacodyn 2012;39: 711e23.
288. Cao Y, Jusko WJ. Survey of monoclonal antibody disposition in man utilizing a minimal physiologically-based pharmacokinetic model. J Pharmacokinet Pharmacodyn 2014;41:571e80.
289. Wong H, Chow TW. Physiologically based pharmacokinetic modeling of therapeutic proteins. J Pharm Sci 2017;106:2270e5.
290. Niederalt C, Kuepfer L, Solodenko J, Eissing T, Siegmund HU, Block M, et al. A generic whole body physiologically based pharmacokinetic model for therapeutic proteins in PK-Sim. J Pharmacokinet Pharmacodyn 2018;45:235e57.
291. Liu D, Song H, Song L, Liu Y, Cao Y, Jiang J, et al. A unified strategy in selection of the best allometric scaling methods to predict human clearance based on drug disposition pathway. Xenobiotica 2016;46:1105e11.
292. Liu D, Ma X, Liu Y, Zhou H, Shi C, Wu F, et al. Quantitative prediction of human pharmacokinetics and pharmacodynamics of imigliptin, a novel DPP-4 inhibitor, using allometric scaling, IVIVE and PK/PD modeling methods. Eur J Pharm Sci 2016;89: 73e82.
293. Song L, Zhang Y, Jiang J, Ren S, Chen L, Liu D, et al. Development of a Physiologically based pharmacokinetic model for sinogliatin, a first-in-class glucokinase activator, by integrating allometric scaling, in vitro to in vivo exploration and steady-state concentration-mean residence time methods: mechanistic understanding of its pharmacokinetics. Clin Pharmacokinet 2018;57:1307e23.
294. Rose RH, Neuhoff S, Abduljalil K, Chetty M, RostamiHodjegan A, Jamei M. Application of a physiologically based pharmacokinetic model to predict OATP1B1-related variability in pharmacodynamics of rosuvastatin. CPT Pharmacometrics Syst Pharmacol 2014;3:e124.
295. Chen Y, Zhao K, Liu F, Li Y, Zhong Z, Hong S, et al. Predicting antitumor effect of deoxypodophyllotoxin in NCI-H460 tumorbearing mice on the basis of in vitro pharmacodynamics and a physiologically based pharmacokinetic-pharmacodynamic model. Drug Metab Dispos 2018;46:897e907.
296. Feng S, Shi J, Parrott N, Hu P, Weber C, Martin-Facklam M, et al. Combining ‘bottom-up’ and ‘top-down’ methods to assess ethnic difference in clearance: bitopertin as an example. Clin Pharmacokinet 2016;55:823e32.
297. Jorga K, Chavanne C, Frey N, Lave T, Lukacova V, Parrott N, et al. Bottom-up meets top-down: complementary physiologically based pharmacokinetic and population pharmacokinetic modeling for regulatory approval of a dosing algorithm of valganciclovir in very young children. Clin Pharmacol Ther 2016;100:761e9.
298. Gufford BT, Barr JT, González-Pérez V, Layton ME, White Jr JR, Oberlies NH, et al. Quantitative prediction and clinical evaluation of an unexplored herbedrug interaction mechanism in healthy volunteers. CPT Pharmacometrics Syst Pharmacol 2015;4:701e10.
299. Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 2005;6:507e12.
300. Gaj T, Gersbach CA, Barbas III CF. ZFN, TALEN, and CRISPR/Casbased methods for genome engineering. Trends Biotechnol 2013;31: 397e405.
301. Qiu Z, Liu M, Chen Z, Shao Y, Pan H, Wei G, et al. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Res 2013;41:e120.
302. Diliberto JJ, Burgin D, Birnbaum LS. Role of CYP1A2 in hepatic sequestration of dioxin: studies using CYP1A2 knock-out mice. Biochem Biophys Res Commun 1997;236:431e3.
303. Lu Y, Wu D, Wang X, Ward SC, Cederbaum AI. Chronic alcoholinduced liver injury and oxidant stress are decreased in cytochrome P4502E1 knockout mice and restored in humanized cytochrome P4502E1 knock-in mice. Free Radic Biol Med 2010;49:1406e16.
304. Scheer N, Kapelyukh Y, Chatham L, Rode A, Buechel S, Wolf CR. Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines. Mol Pharmacol 2012;82:1022e9.
305. van Waterschoot RA, van Herwaarden AE, Lagas JS, Sparidans RW, Wagenaar E, van der Kruijssen CM, et al. Midazolam metabolism in cytochrome P450 3A knockout mice can be attributed to up-regulated CYP2C enzymes. Mol Pharmacol 2008;73:1029e36.
306. Dragin N, Uno S, Wang B, Dalton TP, Nebert DW. Generation of ‘humanized’ hCYP1A1_1A2_Cyp1a1/1a2e/e mouse line. Biochem Biophys Res Commun 2007;359:635e42.
307. Löfgren S, Baldwin RM, Hiratsuka M, Lindqvist A, Carlberg A, Sim SC, et al. Generation of mice transgenic for human CYP2C18 and CYP2C19: characterization of the sexually dimorphic gene and enzyme expression. Drug Metab Dispos 2008;36:955e62.
308. Hasegawa M, Kapelyukh Y, Tahara H, Seibler J, Rode A, Krueger S, et al. Quantitative prediction of human pregnane X receptor and cytochrome P450 3A4 mediated drugedrug interaction in a novel multiple humanized mouse line. Mol Pharmacol 2011;80:518e28.
309. Scheer N, Kapelyukh Y, McEwan J, Beuger V, Stanley LA, Rode A, et al. Modeling human cytochrome P450 2D6 metabolism and drugedrug interaction by a novel panel of knockout and humanized mouse lines. Mol Pharmacol 2012;81:63e72.
310. Liu Z, Li L, Wu H, Hu J, Ma J, Zhang QY, et al. Characterization of CYP2B6 in a CYP2B6-humanized mouse model: inducibility in the liver by phenobarbital and dexamethasone and role in nicotine metabolism in vivo. Drug Metab Dispos 2015;43:208e16.
311. Zanger UM, Klein K, Thomas M, Rieger JK, Tremmel R, Kandel BA, et al. Genetics, epigenetics, and regulation of drugmetabolizing cytochrome p450 enzymes. Clin Pharmacol Ther 2014;95:258e61.
312. Aitman TJ, Critser JK, Cuppen E, Dominiczak A, FernandezSuarez XM, Flint J, et al. Progress and prospects in rat genetics: a community view. Nat Genet 2008;40:516e22.
313. Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 2016;7:10431.
314. Wang X, Tang Y, Lu J, Shao Y, Qin X, Li Y, et al. Characterization of novel cytochrome P450 2E1 knockout rat model generated by CRISPR/Cas9. Biochem Pharmacol 2016;105:80e90.
315. Lu J, Shao Y, Qin X, Liu D, Chen A, Li D, et al. CRISPR knockout rat cytochrome P450 3A1/2 model for advancing drug metabolism and pharmacokinetics research. Sci Rep 2017;7:42922.
316. Lu J, Liu M, Wang X. Gene targeting on Cyp2c locus in rats using the CRISPR/Cas9 system. In: Wang X, editor. CRISPR: advances in research and applications. New York: NOVA Science Publishers, Inc; 2017. p. 95e111.
317. Wei Y, Yang L, Zhang X, Sui D, Wang C, Wang K, et al. Generation and characterization of a CYP2C11-null rat model by using the CRISPR/Cas9 method. Drug Metab Dispos 2018;46:525e31.
318. Kumar R, Mota LC, Litoff EJ, Rooney JP, Boswell WT, Courter E, et al. Compensatory changes in CYP expression in three different toxicology mouse models: cAR-null, Cyp3a-null, and Cyp2b9/10/13- null mice. PLoS One 2017;12:e0174355.
319. Liang C, Zhao J, Lu J, Zhang Y, Ma X, Shang X, et al. Development and characterization of MDR1 (Mdr1a/b) CRISPR/Cas9 knockout rat model. Drug Metab Dispos 2019;47:71e9.
320. Qin X, Lu J, Wang P, Xu P, Liu M, Wang X. Cytochrome P450 3A selectively affects the pharmacokinetic interaction between erlotinib and docetaxel in rats. Biochem Pharmacol 2017;143:129e39.
321. Schneider KJ, DeCaprio AP. Covalent thiol adducts arising from reactive intermediates of cocaine biotransformation. Chem Res Toxicol 2013;26:1755e64.
322. Lai WG, Farah N, Moniz GA, Wong YN. A Baeyer-Villiger oxidation specifically catalyzed by human flavin-containing monooxygenase 5. Drug Metab Dispos 2011;39:61e70.
323. Meng J, Zhong D, Li L, Yuan Z, Yuan H, Xie C, et al. Metabolism of MRX-I, a novel antibacterial oxazolidinone, in humans: the oxidative ring opening of 2, 3-dihydropyridin-4-one catalyzed by non-P450 enzymes. Drug Metab Dispos 2015;43:646e59.
324. Aigrain L, Pompon D, Truan G. Role of the interface between the FMN and FAD domains in the control of redox potential and electronic transfer of NADPH-cytochrome P450 reductase. Biochem J 2011;435:197e206.
325. Hou X, Zhou J, Yu S, Zhou L, Zhang Y, Zhong D, et al. Differences in the in vivo and in vitro metabolism of imrecoxib in humans: formation of the rate-limiting aldehyde intermediate. Drug Metab Dispos 2018;46:1320e8.
326. Fukami T, Yokoi T. The emerging role of human esterases. Drug Metab Pharmacokinet 2012;27:466e77.
327. Kurokawa T, Fukami T, Yoshida T, Nakajima M. Arylacetamide deacetylase is responsible for activation of prasugrel in human and dog. Drug Metab Dispos 2016;44:409e16.
328. Jiang J, Chen X, Zhong D. Arylacetamide deacetylase is involved in vicagrel bioactivation in humans. Front Pharmacol 2017;8:846.
329. Liu C, Chen XY, Zhong D. Metabolism and pharmacokinetics of vicagrel, a novel thienopyridine P2y12 inhibitor, compared with clopidogrel in healthy Chinese subjects. Drug Metab Pharmacokinet 2017;32: S93e4.
330. Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. Nitrilecontaining pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 2010;53:7902e17.
331. Kong F, Pang X, Zhao J, Deng P, Zheng M, Zhong D, et al. Hydrolytic metabolism of cyanopyrrolidine DPP-4 inhibitors mediated by dipeptidyl peptidases. Drug Metab Dispos 2019;47:238e48.
332. Gao R, Li L, Xie C, Diao X, Zhong D, Chen X. Metabolism and pharmacokinetics of morinidazole in humans: identification of diastereoisomeric morpholine N+-glucuronides catalyzed by UDP glucuronosyltransferase 1A9. Drug Metab Dispos 2012;40:556e67.
333. Zhou D, Guo J, Linnenbach AJ, Booth-Genthe CL, Grimm SW. Role of human UGT2B10 in N-glucuronidation of tricyclic antidepressants, amitriptyline, imipramine, clomipramine, and trimipramine. Drug Metab Dispos 2010;38:863e70.
334. Kaivosaari S, Finel M, Koskinen M. N-Glucuronidation of drugs and other xenobiotics by human and animal UDP-glucuronosyltransferases. Xenobiotica 2011;41:652e69.
335. Xue P, Liu D, Wang J, Zhang N, Zhou J, Li L, et al. Redox-sensitive citronellol-cabazitaxel conjugate: maintained in vitro cytotoxicity and self-assembled as multifunctional nanomedicine. Bioconjug Chem 2016;27:1360e72.
336. Yamaguchi T, Nakajima Y, Nakamura Y. Possible mechanism for species difference on the toxicity of pivalic acid between dogs and rats. Toxicol Appl Pharm 2006;214:61e8.
337. Qiu F, Cui L, Chen L, Sun J, Yao X. Two novel creatinine adducts of andrographolide in human urine. Xenobiotica 2012;42:911e6.
338. von Richter O, Massimini G, Scheible H, Udvaros I, Johne A. Pimasertib, a selective oral MEK1/2 inhibitor: absolute bioavailability, mass balance, elimination route, and metabolite profile in cancer patients. Br J Clin Pharmacol 2016;82: 1498e508.
339. Yin W, Doss GA, Stearns RA, Kumar S. N-Acetylation of the glutamate residue of intact glutathione conjugates in rats: a novel pathway for the metabolic processing of thiol adducts of xenobiotics. Drug Metab Dispos 2004;32:43e8.
340. Savage RE, Tyler AN, Miao XS, Chan TC. Identification of a novel glucosylsulfate conjugate as a metabolite of 3,4-dihydro-2,2- dimethyl-2H-naphtho[1,2-b]pyran-5,6-dione(ARQ 501, betalapachone) in mammals. Drug Metab Dispos 2008;36:753e8.
Similar articles:
1.Zhoupeng Zhang, Wei Tang.Drug metabolism in drug discovery and development[J]. Acta Pharmaceutica Sinica B, 2018,8(5): 721-732
2.Shinhee Park, Sunny Lihua Cheng, Julia Yue Cui.Characterizing drug-metabolizing enzymes and transporters that are bona fide CAR-target genes in mouse intestine[J]. Acta Pharmaceutica Sinica B, 2016,6(5): 475-491
3.Sivacharan Kolliparan, Rajesh Kumar Gandhi.Pharmacokinetic aspects and in vitro-in vivo correlation potential for lipid-based formulations[J]. Acta Pharmaceutica Sinica B, 2014,4(5): 333-349