Original articles
Qi Dai, Zhihua Zheng, Fan Xia, Peiqing Liu, Min Li. A one-step specific assay for continuous detection of sirtuin 2 activity[J]. Acta Pharmaceutica Sinica B, 2019, 9(6): 1183-1192

A one-step specific assay for continuous detection of sirtuin 2 activity
Qi Dai, Zhihua Zheng, Fan Xia, Peiqing Liu, Min Li
School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, China
Sirtuins (SIRTs) are nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases with diverse physiological functions. A variety of small molecules have been developed to interrogate the physiological function of SIRTs. Therefore, it is desirable to establish efficient and convenient assays to screen SIRTs modulators. In this study, we designed a series of fluorescent nonapeptide probes derived from substrates of SIRT1-SIRT3. Fluorescence increment of these probes is based on SIRT-mediated removal of the acyl side chain with fluorophore, which makes this system free of lysine-recognizing protease. Comparing the reaction of these fluorescent nonapeptide substrates with SIRT1-SIRT3 and SIRT6, it was confirmed that this assessment system was the most suitable for SIRT2 activity detection. Thus, SIRT2 was used to modify substrates by truncating the amino acids or lysine side chain of nonapeptide. Finally, two specific and efficient fluorescent probes for SIRT2, ne-D9 and ne-K4a, were developed. Evaluation of the results revealed that ne-K4a based assay was more suitable for modulators screening in vitro, while the other specific substrate ne-D9 was stable in cell lysate and could detect the activity of SIRT2 in the same. In summary, this study presents a novel strategy for detecting SIRT2 activity in vitro and in cell lysate.
Key words:    Deacetylate    Deacylate    Fluorescent probe    One-step assay    Sirtuins    SIRT2   
Received: 2019-01-20     Revised: 2019-05-18
DOI: 10.1016/j.apsb.2019.05.007
Funds: This work was supported in part by the National Natural Science Foundation of China (31671437), the Natural Science Foundation of Guangdong Province, China (2016A030313335), and the Guangdong Provincial Key Laboratory of Construction Foundation, China (2017B030314030), and Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program, China (2017BT01Y093). We thank Dr. Baohua Liu (Department of Biochemistry and Molecular Biology, Shenzhen University, Health Science Center, China) for the gift of plasmid of SIRT7.
Corresponding author: Peiqing Liu, Min Li     Email:liupq@mail.sysu.edu.cn;limin65@mail.sysu.edu.cn
Author description:
PDF(KB) Free
Qi Dai
Zhihua Zheng
Fan Xia
Peiqing Liu
Min Li

1. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 2012;13:225-38.
2. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000;403:795-800.
3. Galleano I, Schiedel M, Jung M, Madsen AS, Olsen CA. A continuous, fluorogenic sirtuin 2 deacylase assay: substrate screening and inhibitor evaluation. J Med Chem 2016;59:1021-31.
4. Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, et al. Sirt5 is a NADdependent protein lysine demalonylase and desuccinylase. Science 2011;334:806-9.
5. Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, Dai L, et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metabol 2014;19:605-17.
6. Mathias RA, Greco TM, Oberstein A, Budayeva HG, Chakrabarti R, Rowland EA, et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 2014;159:1615-25.
7. Anderson KA, Huynh FK, Fisher-Wellman K, Stuart JD, Peterson BS, Douros JD, et al. SIRT4 is a lysine deacylase that controls leucine metabolism and insulin secretion. Cell Metabol 2017;25:838-55.
8. Bao X, Xiong Y, Li X, Li XD. A chemical reporter facilitates the detection and identification of lysine HMGylation on histones. Chem Sci 2018;9:7797-801.
9. Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013;496:110-3.
10. Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun 2016;7:12235.
11. Haigis MC, Guarente LP. Mammalian sirtuinsdemerging roles in physiology, aging, and calorie restriction. Genes Dev 2006;20: 2913-21.
12. Hershberger KA, Martin AS, Hirschey MD. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nat Rev Nephrol 2017;13:213-25.
13. Sanchez-Fidalgo S, Villegas I, Sanchez-Hidalgo M, de la Lastra CA. Sirtuin modulators: mechanisms and potential clinical implications. Curr Med Chem 2012;19:2414-41.
14. Watanabe H, Inaba Y, Kimura K, Matsumoto M, Kaneko S, Kasuga M, et al. Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein. Nat Commun 2018;9:30.
15. Huang Z, Zhao J, Deng W, Chen Y, Shang J, Song K, et al. Identification of a cellularly active SIRT6 allosteric activator. Nat Chem Biol 2018;14:1118-26.
16. Borra MT, Denu JM. Quantitative assays for characterization of the Sir2 family of NAD+-dependent deacetylases. Methods Enzymol 2004;376:171-87.
17. Dancy BC, Ming SA, Papazyan R, Jelinek CA, Majumdar A, Sun Y, et al. Azalysine analogues as probes for protein lysine deacetylation and demethylation. J Am Chem Soc 2012;134:5138-48.
18. Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 2005;280:17187-95.
19. Li Y, Liu T, Liao S, Li Y, Lan Y, Wang A, et al. A mini-review on Sirtuin activity assays. Biochem Biophys Res Commun 2015;467:459-66.
20. Li Y, You L, Huang W, Liu J, Zhu H, He B. A FRET-based assay for screening SIRT6 modulators. Eur J Med Chem 2015;96:245-9.
21. Li Y, Huang W, You L, Xie T, He B. A FRET-based assay for screening SIRT5 specific modulators. Bioorg Med Chem Lett 2015;25: 1671-4.
22. Kawaguchi M, Ikegawa S, Ieda N, Nakagawa H. A fluorescent probe for imaging Sirtuin activity in living cells, based on one-step cleavage of the dabcyl quencher. Chembiochem 2016;17:1961-7.
23. Schuster S, Roessler C, Meleshin M, Zimmermann P, Simic Z, Kambach C, et al. A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions. Sci Rep 2016;6: 22643.
24. Chiang YL, Lin H. An improved fluorogenic assay for SIRT1, SIRT2, and SIRT3. Org Biomol Chem 2016;14:2186-90.
25. Schlicker C, Boanca G, Lakshminarasimhan M, Steegborn C. Structure-based development of novel sirtuin inhibitors. Aging (Albany NY) 2011;3:852-72.
26. Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, et al. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat Commun 2017;8:318.
27. Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell 2002;10:523-35.
28. Bheda P, Jing H, Wolberger C, Lin H. The substrate specificity of Sirtuins. Annu Rev Biochem 2016;85:405-29.
29. Roessler C, Tuting C, Meleshin M, Steegborn C, Schutkowski M. A novel continuous assay for the deacylase Sirtuin 5 and other deacetylases. J Med Chem 2015;58:7217-23.
30. Feldman JL, Baeza J, Denu JM. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 2013;288:31350-6.
31. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 2007;317:516-9.
32. Rumpf T, Schiedel M, Karaman B, Roessler C, North BJ, Lehotzky A, et al. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat Commun 2015;6:6263.
33. Tatum PR, Sawada H, Ota Y, Itoh Y, Zhan P, Ieda N, et al. Identification of novel SIRT2-selective inhibitors using a click chemistry approach. Bioorg Med Chem Lett 2014;24: 1871-4.
34. Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 1999;4:67-73.
35. Feldman JL, Dittenhafer-Reed KE, Kudo N, Thelen JN, Ito A, Yoshida M, et al. Kinetic and structural basis for acyl-group selectivity and NAD+ dependence in sirtuin-catalyzed deacylation. Biochemistry 2015;54:3037-50.