Original articles
Yu Lan, Ping Bai, Zude Chen, Ramesh Neelamegam, Michael S. Placzek, Hao Wang, Stephanie A. Fiedler, Jing Yang, Gengyang Yuan, Xiying Qu, Hayden R. Schmidt, Jinchun Song, Marc D. Normandin, Chongzhao Ran, Changning Wang. Novel radioligands for imaging sigma-1 receptor in brain using positron emission tomography (PET)[J]. Acta Pharmaceutica Sinica B, 2019, 9(6): 1204-1215

Novel radioligands for imaging sigma-1 receptor in brain using positron emission tomography (PET)
Yu Lana,d, Ping Baia, Zude Chena, Ramesh Neelamegamb, Michael S. Placzeka, Hao Wanga, Stephanie A. Fiedlera, Jing Yanga, Gengyang Yuanb, Xiying Qub, Hayden R. Schmidtc, Jinchun Songd, Marc D. Normandinb, Chongzhao Rana, Changning Wanga
a Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA;
b Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA;
c Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02129, USA;
d Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
Abstract:
The sigma-1 receptor (σ1R) is a unique intracellular protein. σ1R plays a major role in various pathological conditions in the central nervous system (CNS), implicated in several neuropsychiatric disorders. Imaging of σ1R in the brain using positron emission tomography (PET) could serve as a noninvasively tool for enhancing the understanding of the disease's pathophysiology. Moreover, σ1R PET tracers can be used for target validation and quantification in diagnosis. Herein, we describe the radiosynthesis, in vivo PET/CT imaging of novel σ1R 11C-labeled radioligands based on 6-hydroxypyridazinone,[11C]HCC0923 and[11C]HCC0929. Two radioligands have high affinities to σ1R, with good selectivity. In mice PET/CT imaging, both radioligands showed appropriate kinetics and distributions. Additionally, the specific interactions of two radioligands were reduced by compounds 13 and 15 (self-blocking). Of the two,[11C]HCC0929 was further investigated in positive ligands blocking studies, using classic σ1R agonist SA 4503 and σ1R antagonist PD 144418. Both σ1R ligands could extensively decreased the uptake of[11C]HCC0929 in mice brain. Besides, the biodistribution of major brain regions and organs of mice were determined in vivo. These studies demonstrated that two radioligands, especially[11C]HCC0929, possessed ideal imaging properties and might be valuable tools for non-invasive quantification of σ1R in brain.
Key words:    σ1R    PET    Brain imaging    6-Hydroxypyridazinone    11C-labeled radioligand   
Received: 2019-04-06     Revised: 2019-06-28
DOI: 10.1016/j.apsb.2019.07.002
Funds: This work was supported by a pilot funding from the Athinoula A. Martinos Center for Biomedical Imaging at the Massachusetts General Hospital (Changning Wang, USA), National Natural Science Foundation of China (Grant No.81602946, Yu Lan) and Natural Science Foundation of Hubei Province of China (Grant No. 2016CFB258, Yu Lan). The authors are grateful to Prof. Andrew C. Kruse in Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School for the constructive discussion and enthusiastic help in molecular docking, the Athinoula A. Martinos Center Radiopharmacy Lab staff for assistant in radiochemistry and Prof. Xudong Cao in Xuzhou Medical School for the discussion in chemistry and structure identification.
Corresponding author: Changning Wang     Email:cwang15@mgh.harvard.edu
Author description:
Service
PDF(KB) Free
Print
0
Authors
Yu Lan
Ping Bai
Zude Chen
Ramesh Neelamegam
Michael S. Placzek
Hao Wang
Stephanie A. Fiedler
Jing Yang
Gengyang Yuan
Xiying Qu
Hayden R. Schmidt
Jinchun Song
Marc D. Normandin
Chongzhao Ran
Changning Wang

References:
1. Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine-and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 1976;197:517-32.
2. Zukin SR, Brady KT, Slifer BL, Balster RL. Behavioral and biochemical stereoselectivity of sigma opiate/PCP receptors. Brain Res 1984;294:174-7.
3. Hellewell SB, Bowen WD. A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of Guinea pig brain. Brain Res 1990;527: 244-53.
4. Su TP, Su TC, Nakamura Y, Tsai SY. The sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol Sci 2016; 37:262-78.
5. Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, Kempner E, et al. Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci U S A 1996; 93:8072-7.
6. Alon A, Schmidt HR, Wood MD, Sahn JJ, Martin SF, Kruse AC. Identification of the gene that codes for the s2 receptor. Proc Natl Acad Sci U S A 2017;114:7160-5.
7. Pabba M. The essential roles of protein-protein interaction in sigma-1 receptor functions. Front Cell Neurosci 2003;7:50.
8. Hayashi T, Su TP. Regulating ankyrin dynamics: roles of sigma-1 receptors. Proc Natl Acad Sci U S A 2001;98:491-6.
9. Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 2007;131:596-610.
10. Maurice T, Su TP. The pharmacology of sigma-1 receptors. Pharmacol Ther 2009;124:195-206.
11. Van Waarde A, Rybczynska AA, Ramakrishnan N, Ishiwata K, Elsinga PH, Dierckx RA. Sigma receptors in oncology: therapeutic and diagnostic applications of sigma ligands. Curr Pharmaceut Des 2010;16:3519-37.
12. Tesei A, Cortesi M, Zamagni A, Arienti C, Pignatta S, Zanoni M, et al. Sigma receptors as endoplasmic reticulum stress “gatekeepers” and their modulators as emerging new weapons in the fight against cancer. Front Pharmacol 2018;9:711.
13. Schmidt HR, Zheng S, Gurpinar E, Koehl A, Manglik A, Kruse AC. Crystal structure of the human σ1 receptor. Nature 2016;532:527-30.
14. Schmidt HR, Betz RM, Dror RO, Kruse AC. Structural basis for σ1 receptor ligand recognition. Nat Struct Mol Biol 2018;25:981-7.
15. Brust P, Deuther-Conrad W, Lehmkuhl K, Jia H, Wünsch B. Molecular imaging of σ1 receptors in vivo: current status and perspectives. Curr Med Chem 2014;21:35-69.
16. Weber F, Brust P, Laurini E, Pricl S, Wünsch B. Fluorinated PET tracers for molecular imaging of σ1 receptors in the central nervous system. In: Smith SB, Su TP, editors. Sigma receptors: their role in disease and as therapeutic targets. Cham: Springer; 2017. p. 31-48.
17. Jia H, Zhang Y, Huang Y. Imaging sigma receptors in the brain: new opportunities for diagnosis of Alzheimer’s disease and therapeutic development. Neurosci Lett 2019;691:3-10.
18. Toyohara J, Sakata M, Ishiwata K. PET imaging of sigma1 receptors. In: Dierckx RA, Otte A, De Vries EF, Van Waarde A, Luiten PG, editors. PET and SPECT of neurobiological systems. Berlin, Heidelberg: Springer; 2014. p. 741-63.
19. Kawamura K, Ishiwata K, Tajima H, Ishii SI, Matsuno K, Homma Y, et al. In vivo evaluation of [11C]SA4503 as a PET ligand for mapping CNS sigma1 receptors. Nucl Med Biol 2000;27:255-61.
20. Shen B, James ML, Andrews L, Lau C, Chen S, Palner M, et al. Further validation to support clinical translation of [18F]FTC-146 for imaging sigma-1 receptors. EJNMMI Res 2015;5:49.
21. Kawamura K, Tsukada H, Shiba K, Tsuji C, Harada N, Kimura Y, et al. Synthesis and evaluation of fluorine-18-labeled SA4503 as a selective sigma1 receptor ligand for positron emission tomography. Nucl Med Biol 2007;34:571-7.
22. Waterhouse RN, Collier TL. In vivo evaluation of [18F]1-(3-fluoropropyl)-4-(4-cyanophenoxymethyl)piperidine: a selective sigma-1 receptor radioligand for PET. Nucl Med Biol 1997;24: 127-34.
23. Waterhouse RN, Zhao J, Stabin MG, Ng H, Schindler-Horvat J, Chang RC, et al. Preclinical acute toxicity studies and dosimetry estimates of the novel sigma-1 receptor radiotracer, [18F]SFE. Mol Imaging Biol 2006;8:284-91.
24. Waterhouse RN, Chang RC, Zhao J, Carambot PE. In vivo evaluation in rats of [18F]1-(2-fluoroethyl)-4-[(4-cyanophenoxy)methyl]piperidine as a potential radiotracer for PET assessment of CNS sigma-1 receptors. Nucl Med Biol 2006;33:211-5.
25. James ML, Shen B, Zavaleta CL, Nielsen CH, Mesangeau C, Vuppala PK, et al. New positron emission tomography (PET) radioligand for imaging s-1 receptors in living subjects. J Med Chem 2012; 55:8272-82.
26. Hjørnevik T, Cipriano PW, Shen B, Park JH, Gulaka P, Holley D, et al. Biodistribution and radiation dosimetry of 18F-FTC-146 in humans. J Nucl Med 2017;58:2004-9.
27. NIH-U.S. National Library of Medicine, ClinicalTrals. gov, Identifier: NTC02753101. Available from: https://clinicaltrials.gov/ct2/show/NCT02753101?termZFTC-146&rankZ1#wrapper.
28. Cao X, Chen Y, Zhang Y, Lan Y, Zhang J, Xu X, et al. Synthesis and biological evaluation of novel σ1 receptor ligands for treating neuropathic pain: 6-hydroxypyridazinones. J Med Chem 2016;59: 2942-61.
29. Lan Y, Chen Y, Cao X, Zhang J, Wang J, Xu X, et al. Synthesis and biological evaluation of novel sigma-1 receptor antagonists based on pyrimidine scaffold as agents for treating neuropathic pain. J Med Chem 2014;57:10404-23.
30. McOmie JF, West DE. 3,30-dihydroxybiphenyl. Org Synth 1969;49: 50-2.
31. Van De Bittner GC, Ricq EL, Hooker JM. A philosophy for CNS radiotracer design. Acc Chem Res 2014;47:3127-34.
32. Weissman AD, Su TP, Hedreen JC, London ED. Sigma receptors in post-mortem human brains. J Pharmacol Exp Ther 1988;247: 29-33.
33. Kornhuber J, Schoppmeyer K, Bendig C, Riederer P. Characterization of [3H]pentazocine binding sites in post-mortem human frontal cortex. J Neural Transm (Vienna) 1996;103:45-53.
34. Andrés A, Rosés M, Ràfols C, Bosch E, Espinosa S, Segarra V, et al. Setup and validation of shake-flask procedures for the determination of partition coefficients (log D) from low drug amounts. Eur J Pharm Sci 2015;76:181-91.
35. Linkens K, Schmidt HR, Sahn JJ, Kruse AC, Martin SF. Investigating isoindoline, tetrahydroisoquinoline, and tetrahydrobenzazepine scaffolds for their sigma receptor binding properties. Eur J Med Chem 2018;151:557-67.
36. Wang C, Schroeder FA, Hooker JM. Development of new positron emission tomography radiotracer for BET imaging. ACS Chem Neurosci 2017;8:17-21.
37. Wang C, Schroeder FA, Wey HY, Borra R, Wagner FF, Reis S, et al. In vivo imaging of histone deacetylases (HDACs) in the central nervous system and major peripheral organs. J Med Chem 2014;57: 7999-8009.
38. Ma Y, Hof PR, Grant SC, Blackband SJ, Bennett R, Slatest L, et al. A threedimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 2005;135:1203-15.
39. Mirrione MM, Schiffer WK, Fowler JS, Alexoff DL, Dewey SL, Tsirka SE. A novel approach for imaging brain-behavior relationships in mice reveals unexpected metabolic patterns during seizures in the absence of tissue plasminogen activator. Neuroimage 2007;38: 34-42.
40. Kawamura K, Kobayashi T, Matsuno K, Ishiwata K. Different brain kinetics of two sigma1 receptor ligands, [3H](+)-pentazocine and [11C]SA4503, by P-glycoprotein modulation. Synapse 2003;48:80-6.
41. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006;49:6177-96.
42. Akunne HC, Whetzel SZ, Wiley JN, Corbin AE, Ninteman FW, Tecle H, et al. The pharmacology of the novel and selective sigma ligand, PD 144418. Neuropharmacology 1997;36:51-62.
43. Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2003;2:131-7.