Original articles
Chenglin Wu, Cong Xi, Junhua Tong, Jing Zhao, Hualiang Jiang, Jiang Wang, Yiping Wang, Hong Liu. Design, synthesis, and biological evaluation of novel tetrahydroprotoberberine derivatives (THPBs) as proprotein convertase subtilisin/kexin type 9 (PCSK9) modulators for the treatment of hyperlipidemia[J]. Acta Pharmaceutica Sinica B, 2019, 9(6): 1216-1230

Design, synthesis, and biological evaluation of novel tetrahydroprotoberberine derivatives (THPBs) as proprotein convertase subtilisin/kexin type 9 (PCSK9) modulators for the treatment of hyperlipidemia
Chenglin Wua,b, Cong Xia,c, Junhua Tonga,c, Jing Zhaoa,c, Hualiang Jianga,c, Jiang Wanga,c, Yiping Wanga,c, Hong Liua,c
a State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
b School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
c University of Chinese Academy of Sciences, Beijing 100049, China
Proprotein convertase subtilisin/kexin type 9 (PCSK9) modulators may attenuate PCSK9-induced low-density lipoprotein receptor (LDLR) degradation in lysosome and promote the clearance of circulating low-density lipoprotein cholesterol (LDL-C). A novel series of tetrahydroprotoberberine derivatives (THPBs) were designed, synthesized, and evaluated as PCSK9 modulators for the treatment of hyperlipidemia. Among them, eight compounds exhibited excellent activities in downregulating hepatic PCSK9 expression better than berberine in HepG2 cells. In addition, five compounds 15, 18, 22, (R)-22, and (S)-22 showed better performance in the low-density lipoprotein, labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (DiI-LDL) uptake assay, compared with berberine at the same concentration. Compound 22, selected for in vivo evaluation, demonstrated significant reductions of total cholesterol (TC) and LDL-C in hyperlipidemic hamsters with a good pharmacokinetic profile. Further exploring of the lipid-lowering mechanism showed that compound 22 promoted hepatic LDLR expression in a dose-dependent manner in HepG2 cells. Additional results of human ether-à-go-go related gene (hERG) inhibition assay indicated the potential druggability for compound 22, which is a promising lead compound for the development of PCSK9 modulator for the treatment of hyperlipidemia.
Key words:    PCSK9    Tetrahydroprotoberberine derivatives    Low-density lipoprotein   
Received: 2019-03-28     Revised: 2019-06-11
DOI: 10.1016/j.apsb.2019.06.006
Funds: We gratefully acknowledge the funds from National Program on Key Basic Research Project of China (2015CB910304), the National Natural Science Foundation (81620108027, 21632008, and 21402226, China), National Science & Technology Major Project Key New Drug Creation and Manufacturing Program (2018ZX09711002-012-007, China), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA12040213) for financial support.
Corresponding author: Jiang Wang, Yiping Wang, Hong Liu     Email:jwang@simm.ac.cn;ypwang@simm.ac.cn;hliu@simm.ac.cn
Author description:
PDF(KB) Free
Chenglin Wu
Cong Xi
Junhua Tong
Jing Zhao
Hualiang Jiang
Jiang Wang
Yiping Wang
Hong Liu

1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017;70:1-25.
2. Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2017;38:2459-72.
3. Lagace TA. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr Opin Lipidol 2014;25:387-93.
4. Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003;34:154-6.
5. Zhao Z, Tuakli-Wosornu Y, Lagace TA, Kinch L, Grishin NV, Horton JD, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet 2006;79:514-23.
6. Stein EA, Gipe D, Bergeron J, Gaudet D, Weiss R, Dufour R, et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet 2012;380:29-36.
7. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 2015;372:1489-99.
8. Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med 2017;376:41-51.
9. Maekawa H, Yokoyama SN, inventor; Kasuma Parteners Inc., assignee. Condensed heterocyclic compounds. WO 2016/021706 A1. 2016 Nov 2.
10. Lintner NG, McClure KF, Petersen D, Londregan AT, Piotrowski DW, Wei L, et al. Selective stalling of human translation through smallmolecule engagement of the ribosome nascent chain. PLoS Biol 2017;15. e2001882.
11. Darout E, Dullea R, Hawkins JJ, Londregan AT, Loria PM, Maguire B, et al. N-Piperidin-3-ylbenzamide derivatives for treating cardiovascular diseases. European Patent Application EP2986599. 2014 Mar 3.
12. McClure KF, Piotrowski DW, Petersen D, Wei L, Xiao J, Londregan AT, et al. Liver-targeted small-molecule inhibitors of proprotein convertase subtilisin/kexin type 9 synthesis. Angew Chem Int Ed 2017;56:16218-22.
13. Pettersen D, Fjellström O. Small molecule modulators of PCSK9da literature and patent overview. Bioorg Med Chem Lett 2018;28: 1155-69.
14. Pel P, Chae HS, Nhoek P, Kim YM, Chin YW. Chemical constituents with proprotein convertase subtilisin/kexin type 9 mRNA expression inhibitory activity from dried immature Morus alba fruits. J Agric Food Chem 2017;65:5316-21.
15. Bang S, Chae HS, Lee C, Choi HG, Ryu J, Li W, et al. New aromatic compounds from the fruiting body of Sparassis crispa (Wulf.) and their inhibitory activities on proprotein convertase subtilisin/kexin type 9 mRNA expression. J Agric Food Chem 2017;65:6152-7.
16. Pel P, Chae HS, Nhoek P, Yeo W, Kim YM, Chin YW. Lignans from the fruits of Schisandra chinensis (Turcz.) Baill inhibit proprotein convertase subtilisin/kexin type 9 expression. Phytochemistry 2017; 136:119-24.
17. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 2004;10:1344-51.
18. Cameron J, Ranheim T, Kulseth MA, Leren TP, Berge KE. Berberine decreases PCSK9 expression in HepG2 cells. Atherosclerosis 2008; 201:266-73.
19. Hu Y, Ehli EA, Kittelsrud J, Ronan PJ, Munger K, Downey T, et al. Lipid-lowering effect of berberine in human subjects and rats. Phytomedicine 2012;19:861-7.
20. Yan H, Ma YL, Gui YZ, Wang SM, Wang XB, Gao F, et al. MG132, a proteasome inhibitor, enhances LDL uptake in HepG2 cells in vitro by regulating LDLR and PCSK9 expression. Acta Pharmacol Sin 2014; 35:994-1004.
21. Kawano M, Takagi R, Kaneko A, Matsushita S. Berberine is a dopamine D1-and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses. J Neuroimmunol 2015;289:43-55.
22. Jia Y, Xu B, Xu J. Effects of type 2 diabetes mellitus on the pharmacokinetics of berberine in rats. Pharm Biol 2017;55:510-5.
23. Liu YT, Hao HP, Xie HG, Lai L, Wang Q, Liu CX, et al. Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats. Drug Metab Dispos 2010;38:1779-84.
24. Rodriguez-Menchaca A, Ferrer-Villada T, Lara J, Fernandez D, Navarro-Polanco RA, Sanchez-Chapula JA. Block of HERG channels by berberine: mechanisms of voltage-and state-dependence probed with site-directed mutant channels. J Cardiovasc Pharmacol 2006;47: 21-9.
25. Párraga J, Cabedo N, Andujar S, Piqueras L, Moreno L, Galan A, et al. 2,9-and 2,11-Trisubstituted tetrahydroprotoberberines as D2 dopaminergic ligands. Eur J Med Chem 2013;68:150-66.
26. Cheng P, Wang B, Liu X, Liu W, Kang W, Zhou J, et al. Facile synthesis of tetrahydroprotoberberine and protoberberine alkaloids from protopines and study on their antibacterial activities. Nat Prod Res 2014;28:413-9.
27. Ge HX, Zhang J, Chen L, Kou JP, Yu BY. Chemical and microbial semi-synthesis of tetrahydroprotoberberines as inhibitors on tissue factor procoagulant activity. Bioorg Med Chem 2013;21:62-9.
28. Qian W, Lu W, Sun H, Li Z, Zhu L, Zhao R, et al. Design, synthesis, and pharmacological evaluation of novel tetrahydroprotoberberine derivatives: selective inhibitors of dopamine D1 receptor. Bioorg Med Chem 2012;20:4862-71.
29. Sun H, Zhu L, Yang H, Qian W, Guo L, Zhou S, et al. Asymmetric total synthesis and identification of tetrahydroprotoberberine derivatives as new antipsychotic agents possessing a dopamine D1, D2 and serotonin 5-HT1A multi-action profile. Bioorg Med Chem 2013; 21:856-68.
30. Li Z, Huang J, Sun H, Zhou S, Guo L, Zhou Y, et al. Design, synthesis and evaluation of benzo[a]thieno[3, 2-g]quinolizines as novel L-SPD derivatives possessing dopamine D1, D2 and serotonin 5-HT1A multiple action profiles. Bioorg Med Chem 2014;22:5838-46.
31. Guo D, Li J, Lin H, Zhou Y, Chen Y, Zhao F, et al. Design, synthesis, and biological evaluation of novel tetrahydroprotoberberine derivatives (THPBs) as selective α1A-adrenoceptor antagonists. J Med Chem 2016;59:9489-502.
32. Zhou S, Duan Y, Wang J, Zhang J, Sun H, Jiang H, et al. Design, synthesis and biological evaluation of 4,7,12,12a-tetrahydro-5Hthieno[30,20:3,4]pyrido[1,2-b]isoquinolines 50-monophosphate-activated protein kinase (AMPK) indirect activators for the treatment of type 2 diabetes. Eur J Med Chem 2017;140:448-64.
33. Gu Z, Wu L, Duan Y, Wang J, Zhou S, Li J, et al. Design, synthesis, and structure-activity relationships of novel 4,7,12,12a-tetrahydro-5H-thieno[30,20:3,4]pyrido[1,2-b]isoquinoline and 5,8,12,12a-tetrahydro-6H-thieno[20,30:4,5]pyrido[2,1-a]isoquinoline derivatives as cellular activators of adenosine 50-monophosphate-activated protein kinase (AMPK). Bioorg Med Chem 2018;26:2017-27.
34. Fellay C, Dyson PJ, Laurenczy G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew Chem Int Ed 2008;47:3966-8.
35. Uematsu N, Fujii A, Hashiguchi S, Ikariya T, Noyori R. Asymmetric transfer hydrogenation of imines. J Am Chem Soc 1996;118: 4916-7.
36. Cheng JJ, Yang YS. Enantioselective total synthesis of (-)-(S)-stepholidine. J Org Chem 2009;74:9225-8.
37. Guo Q, Wang PR, Milot DP, Ippolito MC, Hernandez M, Burton CA, et al. Regulation of lipid metabolism and gene expression by fenofibrate in hamsters. Biochim Biophys Acta 2001;1533:220-32.