Stephanie L. Collins, Andrew D. Patterson. The gut microbiome: an orchestrator of xenobiotic metabolism[J]. Acta Pharmaceutica Sinica B, 2020, 10(1): 19-32

The gut microbiome: an orchestrator of xenobiotic metabolism
Stephanie L. Collinsa, Andrew D. Pattersonb
a Department of Biochemistry, Microbiology, and Molecular Biology, the Pennsylvania State University, University Park, PA 16802, USA;
b Department of Veterinary and Biomedical Science, the Pennsylvania State University, University Park, PA 16802, USA
Microbes inhabiting the intestinal tract of humans represent a site for xenobiotic metabolism. The gut microbiome, the collection of microorganisms in the gastrointestinal tract, can alter the metabolic outcome of pharmaceuticals, environmental toxicants, and heavy metals, thereby changing their pharmacokinetics. Direct chemical modification of xenobiotics by the gut microbiome, either through the intestinal tract or re-entering the gut via enterohepatic circulation, can lead to increased metabolism or bioactivation, depending on the enzymatic activity within the microbial niche. Unique enzymes encoded within the microbiome include those that reverse the modifications imparted by host detoxification pathways. Additionally, the microbiome can limit xenobiotic absorption in the small intestine by increasing the expression of cellecell adhesion proteins, supporting the protective mucosal layer, and/or directly sequestering chemicals. Lastly, host gene expression is regulated by the microbiome, including CYP450s, multi-drug resistance proteins, and the transcription factors that regulate them. While the microbiome affects the host and pharmacokinetics of the xenobiotic, xenobiotics can also influence the viability and metabolism of the microbiome. Our understanding of the complex interconnectedness between host, microbiome, and metabolism will advance with new modeling systems, technology development and refinement, and mechanistic studies focused on the contribution of human and microbial metabolism.
Key words:    Gut microbiome    Xenobiotic metabolism    Absorption    Gastrointestinal tract    Pharmacokinetics    Enterohepatic circulation    Bioactivation   
Received: 2019-07-18     Revised: 2019-09-21
DOI: 10.1016/j.apsb.2019.12.001
Funds: This work was supported by grant ES028288 (USA).
Corresponding author: Andrew D. Patterson
Author description:
PDF(KB) Free
Stephanie L. Collins
Andrew D. Patterson

1. Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol 1996;4:430-5.
2. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65.
3. Human Microbiome Project Consortium. The human microbiome project consortium structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-14.
4. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 2012;8. e1002358.
5. Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 2006;4. e337.
6. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017;14:491-502.
7. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015;11: 577-91.
8. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med 2016;375:2369-79.
9. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012;488:178-84.
10. Obermajer T, Grabnar I, Benedik E, Tušar T, Robič Pikel T, Fidler Mis N, et al. Microbes in infant gut development: placing abundance within environmental, clinical and growth parameters. Sci Rep 2017; 7:11230.
11. Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science 2014;346:954-9.
12. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science 2016; 352:539-44.
13. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic-pituitaryadrenal system for stress response in mice. J Physiol 2004;558: 263-75.
14. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014; 20:159-66.
15. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. The microbiota modulates gut physiology and behavioral abnormalities associated with autism. Cell 2013;155:1451-63.
16. Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 2011;108:3047-52.
17. Rastelli M, Knauf C, Cani PD. Gut microbes and health: a focus on the mechanisms linking microbes, obesity, and related disorders. Obesity 2018;26:792-800.
18. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Hostegut microbiota metabolic interactions. Science 2012;336: 1262-7.
19. Tréfouël J, Tréfouël TJ, Nitti F, Bovet D. Activité du p-aminophénylsulfamide sur les infections streptocciques expérimentales de la souris et du lapin. Comptes Rendus Soc Biol 1935;120: 756-8.
20. Colebrook L, Buttle GA, O’Meara RA. The mode of action of paminobenzenesulphonamide and prontosil in haemolytic streptococcal infections. Lancet 1936;228:1323-6.
21. Williams RT. The metabolism of certain drugs and food chemicals in man. Ann NY Acad Sci 1971;179:141-54.
22. Selye H. Hormones and resistance. J Pharm Sci 1971;60:1-28.
23. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 2019;570:462-7.
24. Nicholson JK, Wilson ID. Understanding “global” systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov Lond 2003;2:668-76.
25. Hayes CL, Dong J, Galipeau HJ, Jury J, McCarville J, Huang X, et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci Rep 2018;8: 14184.
26. Koppel N, Maini Rekdal V, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota. Science 2017;356. eaag2770.
27. Strong HA, Renwick AG, George CF, Liu YF, Hill MJ. The reduction of sulphinpyrazone and sulindac by intestinal bacteria. Xenobiotica 1987;17:685-96.
28. Nelson DR. Cytochrome P450 diversity in the tree of life. Biochim Biophys Acta 2018;1866:141-54.
29. Chankhamjon P, Javdan B, Lopez J, Hull R, Chatterjee S, Donia MS. Systematic mapping of drug metabolism by the human gut microbiome. BioRxiv 2019. Available from: https// 538215.
30. Erdmann E, Schoner W. Ouabain-receptor interactions in (Na++K+)-ATPase preparations. Naunyn Schmiedebergs Arch Pharmacol 1974;283:335-56.
31. Lindenbaum J, Rund DG, Butler VP, Tse-Eng D, Saha JR. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 1981;305:789-94.
32. Dobkin JF, Saha JR, Butler VP, Neu HC, Lindenbaum J. Digoxininactivating bacteria: identification in human gut flora. Science 1983; 220:325-7.
33. Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 2013;341: 295-8.
34. Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 2013;152:39-50.
35. Rekdal VM, Bess EN, Bisanz JE, Turnbaugh PJ, Balskus EP. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 2019;364. eaau6323.
36. Haiser HJ, Seim KL, Balskus EP, Turnbaugh PJ. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microb 2014;5:233-8.
37. Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 2017;357:1156-60.
38. Lehouritis P, Cummins J, Stanton M, Murphy CT, McCarthy FO, Reid G, et al. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci Rep 2015;5:14554.
39. Micozzi D, Carpi FM, Pucciarelli S, Polzonetti V, Polidori P, Vilar S, et al. Human cytidine deaminase: a biochemical characterization of its naturally occurring variants. Int J Biol Macromol 2014;63: 64-74.
40. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 2019;363. eaat9931.
41. Chu J, Vila-Farres X, Inoyama D, Ternei M, Cohen LJ, Gordon EA, et al. Discovery of MRSA-active antibiotics using primary sequence from the human microbiome. Nat Chem Biol 2016;12:1004-6.
42. Fuller AT. Is p-aminobenzenesulphonamide the active agent in prontosil therapy?. Lancet 1937;229:194-8.
43. Schröder H, Campbell DE. Absorption, metabolism, and excretion of salicylazosulfapyridine in man. Clin Pharmacol Ther 1972;13: 539-51.
44. Paniker U, Levine N. Dapsone and sulfapyridine. Dermatol Clin 2001;19:79-86.
45. Chan RP, Pope DJ, Gilbert AP, Sacra PJ, Baron JH, LennardJones JE. Studies of two novel sulfasalazine analogs, ipsalazide and balsalazide. Dig Dis Sci 1983;28:609-15.
46. Takeno S, Sakai T. Involvement of the intestinal microflora in nitrazepam-induced teratogenicity in rats and its relationship to nitroreduction. Teratology 1991;44:209-14.
47. Linwu SW, Syu CJ, Chen YL, Wang AH, Peng FC. Characterization of Escherichia coli nitroreductase NfsB in the metabolism of nitrobenzodiazepines. Biochem Pharmacol 2009;78:96-103.
48. Adlercreutz H, Hämäläinen E, Gorbach S, Goldin B. Dietary phytooestrogens and the menopause in Japan. Lancet 1992;339:1233.
49. Chang YC, Nair MG. Metabolism of daidzein and genistein by intestinal bacteria. J Nat Prod 1995;58:1892-6.
50. Matthies A, Clavel T, Gütschow M, Engst W, Haller D, Blaut M, et al. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl Environ Microbiol 2008;74:4847-52.
51. Wang XL, Hur HG, Lee JH, Kim KT, Kim SI. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol 2005; 71:214-9.
52. Hwang CS, Kwak HS, Lim HJ, Lee SH, Kang YS, Choe TB, et al. Isoflavone metabolites and their in vitro dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. J Steroid Biochem Mol Biol 2006;101:246-53.
53. Bolca S, Possemiers S, Herregat A, Huybrechts I, Heyerick A, De Vriese S, et al. Microbial and dietary factors are associated with the equol producer phenotype in healthy postmenopausal women. J Nutr 2007;137:2242-6.
54. Frankenfeld CL, Atkinson C, Thomas WK, Gonzalez AP, Jokela T, Wähälä KT, et al. High concordance of daidzein-metabolizing phenotypes in individuals measured 1 to 3 years apart. Br J Nutr 2005; 94:873-6.
55. Pizzolato JF, Saltz LB. The camptothecins. Lancet 2003;361: 2235-42.
56. Smith NF, Figg WD, Sparreboom A. Pharmacogenetics of irinotecan metabolism and transport: an update. Toxicol In Vitro 2006;20: 163-75.
57. Guthrie L, Gupta S, Daily J, Kelly L. Human microbiome signatures of differential colorectal cancer drug metabolism. Npj Biofilms Microbiomes 2017;3:27.
58. Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 2010;330:831-5.
59. Boelsterli UA, Redinbo MR, Saitta KS. Multiple NSAID-induced hits injure the small intestine: underlying mechanisms and novel strategies. Toxicol Sci 2013;131:654-67.
60. LoGuidice A, Wallace BD, Bendel L, Redinbo MR, Boelsterli UA. Pharmacologic targeting of bacterial β-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice. J Pharmacol Exp Ther 2012;341:447-54.
61. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012;489:242-9.
62. Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 2011;141: 769-76.
63. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001;291:881-4.
64. Meslin JC, Sacquet E. Effects of microflora on the dimensions of enterocyte microvilli in the rat. Reprod Nutr Dev 1984;24:307-14.
65. Kashyap PC, Marcobal A, Ursell LK, Larauche M, Duboc H, Earle KA, et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 2013;144:967-77.
66. Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 2015;16:164-77.
67. Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 2010;105:2420-8.
68. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004;54:1469-76.
69. Heneghan JB. Influence of microbial flora on xylose absorption in rats and mice. Am J Physiol-Leg Content 1963;205:417-20.
70. Heneghan JB. Physiology of the alimentary tract. In: Coates ME, Gustafsson BE, editors. The germfree animal in biomedical research. London: Laboratory Animals Ltd.; 1984. chap. 8.
71. Sabolić I, Breljak D, Škarica M, Herak-Kramberger CM. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 2010;23:897-926.
72. Breton J, Daniel C, Dewulf J, Pothion S, Froux N, Sauty M, et al. Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol Lett 2013;222:132-8.
73. Martinez-Guryn K, Hubert N, Frazier K, Urlass S, Musch MW, Ojeda P, et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 2018;23:458-69. e5.
74. Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 2012; 12:277-88.
75. Pierantozzi M, Pietroiusti A, Galante A, Sancesario G, Lunardi G, Fedele E, et al. Helicobacter pylori-induced reduction of acute levodopa absorption in Parkinson’s disease patients. Ann Neurol 2001;50:686-7.
76. Pierantozzi M, Pietroiusti A, Sancesario G, Lunardi G, Fedele E, Giacomini P, et al. Reduced L-dopa absorption and increased clinical fluctuations in Helicobacter pylori-infected Parkinson’s disease patients. Neurol Sci 2001;22:89-91.
77. Niehues M, Hensel A. In-vitro interaction of L-dopa with bacterial adhesins of Helicobacter pylori: an explanation for clinicial differences in bioavailability?. J Pharm Pharmacol 2009;61:1303-7.
78. El-Nezami H, Kankaanpaa P, Salminen S, Ahokas J. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem Toxicol 1998;36:321-6.
79. Halttunen T, Collado MC, El-Nezami H, Meriluoto J, Salminen S. Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Lett Appl Microbiol 2008;46:160-5.
80. El-Nezami H, Polychronaki N, Salminen S, Mykkänen H. Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative a α-zearalenol. Appl Environ Microbiol 2002;68:3545-9.
81. Daisley BA, Monachese M, Trinder M, Bisanz JE, Chmiel JA, Burton JP, et al. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut Microb 2018;10:321-33.
82. Bisanz JE, Enos MK, Mwanga JR, Changalucha J, Burton JP, Gloor GB, et al. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children. MBio 2014;5. e01580ee14.
83. Morozzi G, Cenci G, Scardazza F, Pitzurra M. Cadmium uptake by growing cells of gram-positive and gram-negative bacteria. Microbios 1986;48:27-35.
84. Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, et al. The guteliver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018;15:397-411.
85. Wallace BD, Redinbo MR. Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective. Drug Metab Rev 2013;45:79-100.
86. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013;138:103-41.
87. Björkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One 2009;4. e6958.
88. Lundin A, Bok CM, Aronsson L, Björkholm B, Gustafsson JÅ, Pott S, et al. Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cell Microbiol 2008;10:1093-103.
89. Selwyn FP, Cheng SL, Bammler TK, Prasad B, Vrana M, Klaassen C, et al. Developmental regulation of drug-processing genes in livers of germ-free mice. Toxicol Sci 2015;147:84-103.
90. Toda T, Saito N, Ikarashi N, Ito K, Yamamoto M, Ishige A, et al. Intestinal flora induces the expression of Cyp3a in the mouse liver. Xenobiotica 2009;39:323-34.
91. Saegusa J, Kubota H. Sialadenitis in IQI/Jic mice: a new animal model of Sjögren’s syndrome. J Vet Med Sci 1997;59:897-903.
92. Claus SP, Ellero SL, Berger B, Krause L, Bruttin A, Molina J, et al. Colonization-induced hostegut microbial metabolic interaction. MBio 2011;2. e00271ee10.
93. Kindt A, Liebisch G, Clavel T, Haller D, Hörmannsperger G, Yoon H, et al. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat Commun 2018;9:3760.
94. Selwyn FP, Cui JY, Klaassen CD. RNA-seq quantification of hepatic drug processing genes in germ-free mice. Drug Metab Dispos 2015; 43:1572-80.
95. Michaels S, Wang MZ. The revised human liver cytochrome P450 “pie”: absolute protein quantification of CYP4F and CYP3A enzymes using targeted quantitative proteomics. Drug Metab Dispos 2014;42:1241-51.
96. Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med 2005;352:2211-21.
97. Guengerich FP, Johnson WW, Ueng YF, Yamazaki H, Shimada T. Involvement of cytochrome P450, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer. Environ Health Perspect 1996;104: 557-62.
98. Ramsdell HS, Parkinson A, Eddy AC, Eaton DL. Bioactivation of aflatoxin B1 by human liver microsomes: role of cytochrome P450 IIIA enzymes. Toxicol Appl Pharmacol 1991;108:436-47.
99. Cheng J, Ma X, Krausz KW, Idle JR, Gonzalez FJ. Rifampicinactivated human pregnane X receptor and CYP3A4 induction enhance acetaminophen-induced toxicity. Drug Metab Dispos 2009; 37:1611-21.
100. Selwyn FP, Cheng SL, Klaassen CD, Cui JY. Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics. Drug Metab Dispos 2016;44:262-74.
101. Xie HJ, Broberg U, Griskevicius L, Lundgren S, Carlens S, Meurling L, et al. Alteration of pharmacokinetics of cyclophosphamide and suppression of the cytochrome p450 genes by ciprofloxacin. Bone Marrow Transplant 2003;31:197-203.
102. Pinto AG, Wang YH, Chalasani N, Skaar T, Kolwankar D, Gorski JC, et al. Inhibition of human intestinal wall metabolism by macrolide antibiotics: effect of clarithromycin on cytochrome P450 3A4/5 activity and expression. Clin Pharmacol Ther 2005;77:178-88.
103. Pichard L, Fabre I, Fabre G, Domergue J, Saint Aubert B, Mourad G, et al. Cyclosporin A drug interactions. Screening for inducers and inhibitors of cytochrome P-450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes. Drug Metab Dispos Biol Fate Chem 1990;18:595-606.
104. Westphal JF. Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: an update focused on clarithromycin, azithromycin and dirithromycin. Br J Clin Pharmacol 2000;50:285-95.
105. Anzenbacher P, Anzenbacherová E. Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci 2001;58:737-47.
106. Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 2006;21:257-76.
107. González-Sarrı ás A, Azorín-Ortuño M, Yáñez-Gascón MJ, TomásBarberán FA, Garcı á-Conesa MT, Espín JC. Dissimilar in vitro and in vivo effects of ellagic acid and its microbiota-derived metabolites, urolithins, on the cytochrome P450 1A1. J Agric Food Chem 2009; 57:5623-32.
108. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 2009;106: 3698-703.
109. Zamek-Gliszczynski MJ, Hoffmaster KA, Nezasa K, Tallman MN, Brouwer KLR. Integration of hepatic drug transporters and phase II metabolizing enzymes: mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur J Pharm Sci 2006;27: 447-86.
110. Gamage N, Barnett A, Hempel N, Duggleby RG, Windmill KF, Martin JL, et al. Human sulfotransferases and their role in chemical metabolism. Toxicol Sci Off J Soc Toxicol 2006;90:5-22.
111. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A 2009;106:14728-33.
112. Nakayama H, Kinouchi T, Kataoka K, Akimoto S, Matsuda Y, Ohnishi Y. Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl)uracil that increases the level and toxicity of 5-fluorouracil. Pharmacogenetics 1997;7:35-43.
113. Okuda H, Nishiyama T, Ogura K, Nagayama S, Ikeda K, Yamaguchi S, et al. Lethal drug interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. Drug Metab Dispos Biol Fate Chem 1997;25:270-3.
114. Do KN, Fink LN, Jensen TE, Gautier L, Parlesak A. TLR2 controls intestinal carcinogen detoxication by CYP1A1. PLoS One 2012;7. e32309.
115. Frank M, Hennenberg EM, Eyking A, Rünzi M, Gerken G, Scott P, et al. TLR signaling modulates side effects of anticancer therapy in the small intestine. J Immunol 2015;194:1983-95.
116. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011;108 Suppl 1:4554-61.
117. Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010;156:3216-23.
118. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018;555:623-8.
119. Feng R, Shou JW, Zhao ZX, He CY, Ma C, Huang M, et al. Transforming berberine into its intestine-absorbable form by the gut microbiota. Sci Rep 2015;5:12155.
120. Tian Y, Cai J, Gui W, Nichols RG, Koo I, Zhang J, et al. Berberine directly affects the gut microbiota to promote intestinal farnesoid X receptor activation. Drug Metab Dispos 2019;47:86-93.
121. Lee FY, Lee H, Hubbert ML, Edwards PA, Zhang Y. FXR, a multipurpose nuclear receptor. Trends Biochem Sci 2006;31:572-80.
122. Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 2018;24:1919.
123. Zhang L, Nichols RG, Correll J, Murray IA, Tanaka N, Smith PB, et al. Persistent organic pollutants modify gut microbiotaehost metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ Health Perspect 2015;123:679-88.
124. Ratnaike RN. Acute and chronic arsenic toxicity. Postgrad Med J 2003;79:391-6.
125. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 2014;122:284-91.
126. Rubin DCSS, Alava P, Zekker I, Du Laing G, van de Wiele T. Arsenic thiolation and the role of sulfate-reducing bacteria from the human intestinal tract. Environ Health Perspect 2014;122: 817-22.
127. van de Wiele T, Gallawa CM, Kubachk KM, Creed JT, Basta N, Dayton EA, et al. Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils. Environ Health Perspect 2010;118:1004-9.
128. Coryell M, McAlpine M, Pinkham NV, McDermott TR, Walk ST. The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. Nat Commun 2018;9:5424.
129. Lu K, Cable PH, Abo RP, Ru H, Graffam ME, Schlieper KA, et al. Gut microbiome perturbations induced by bacterial infection affect arsenic biotransformation. Chem Res Toxicol 2013;26:1893-903.
130. Lu K, Mahbub R, Cable PH, Ru H, Parry NM, Bodnar WM, et al. Gut microbiome phenotypes driven by host genetics affect arsenic metabolism. Chem Res Toxicol 2014;27:172-4.
131. Kaplan JL, Shi HN, Walker WA. The role of microbes in developmental immunologic programming. Pediatr Res 2011;69:465-72.
132. Wang M, Monaco MH, Donovan SM. Impact of early gut microbiota on immune and metabolic development and function. Semin Fetal Neonatal Med 2016;21:380-7.
133. Lehmann GM, LaKind JS, Davis MH, Hines EP, Marchitti SA, Alcala C, et al. Environmental chemicals in breast milk and formula: exposure and risk assessment implications. Environ Health Perspect 2018;126. 096001.
134. Iszatt N, Janssen S, Lenters V, Dahl C, Stigum H, Knight R, et al. Environmental toxicants in breast milk of Norwegian mothers and gut bacteria composition and metabolites in their infants at 1 month. Microbiome 2019;7:34.
135. Jin Y, Wu S, Zeng Z, Fu Z. Effects of environmental pollutants on gut microbiota. Environ Pollut 2017;222:1-9.
136. Sueyoshi T, Li L, Wang H, Moore R, Kodavanti PR, Lehmler HJ, et al. Flame retardant BDE-47 effectively activates nuclear receptor CAR in human primary hepatocytes. Toxicol Sci 2014;137: 292-302.
137. Pacyniak EK, Cheng X, Cunningham ML, Crofton K, Klaassen CD, Guo GL. The flame retardants, polybrominated diphenyl ethers, are pregnane X receptor activators. Toxicol Sci 2007;97:94-102.
138. Li CY, Lee S, Cade S, Kuo LJ, Schultz IR, Bhatt DK, et al. Novel interactions between gut microbiome and host drug-processing genes modify the hepatic metabolism of the environmental chemicals polybrominated diphenyl ethers. Drug Metab Dispos 2017;45: 1197-214.
139. Novak R, Ingram M, Clauson S, Das D, Delahanty A, Herland A, et al. A robotic platform for fluidically-linked human body-on-chips experimentation. BioRxiv 2019. Available from: https// 1101/569541.
Similar articles:
1.Zhoupeng Zhang, Wei Tang.Drug metabolism in drug discovery and development[J]. Acta Pharmaceutica Sinica B, 2018,8(5): 721-732