Jian Lu, Xuyang Shang, Weiguo Zhong, Yuan Xu, Rong Shi, Xin Wang. New insights of CYP1A in endogenous metabolism: a focus on single nucleotide polymorphisms and diseases[J]. Acta Pharmaceutica Sinica B, 2020, 10(1): 91-104

New insights of CYP1A in endogenous metabolism: a focus on single nucleotide polymorphisms and diseases
Jian Lua,b, Xuyang Shanga,b, Weiguo Zhonga, Yuan Xub, Rong Shic, Xin Wanga,b
a Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China;
b Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China;
c Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
Cytochrome P450 1A (CYP1A), one of the major CYP subfamily in humans, not only metabolizes xenobiotics including clinical drugs and pollutants in the environment, but also mediates the biotransformation of important endogenous substances. In particular, some single nucleotide polymorphisms (SNPs) for CYP1A genes may affect the metabolic ability of endogenous substances, leading to some physiological or pathological changes in humans. This review first summarizes the metabolism of endogenous substances by CYP1A, and then introduces the research progress of CYP1A SNPs, especially the research related to human diseases. Finally, the relationship between SNPs and diseases is discussed. In addition, potential animal models for CYP1A gene editing are summarized. In conclusion, CYP1A plays an important role in maintaining the health in the body.
Key words:    CYP1A    Endogenous substances    Xenobiotics    SNPs    Metabolism and disease   
Received: 2019-06-04     Revised: 2019-10-13
DOI: 10.1016/j.apsb.2019.11.016
Corresponding author: Jian Lu, Xin Wang;
Author description:
PDF(KB) Free
Jian Lu
Xuyang Shang
Weiguo Zhong
Yuan Xu
Rong Shi
Xin Wang

1. Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metabol 2002; 3:561-97.
2. Nelson DR. Cytochrome P450 nomenclature, 2004. Methods Mol Biol 2006;320:1-10.
3. Xu S, Ren Z, Wang Y, Ding X, Jiang Y. Preferential expression of cytochrome CYP CYP2R1 but not CYP1B1 in human cord blood hematopoietic stem and progenitor cells. Acta Pharm Sin B 2014;4: 464-9.
4. Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liver Dis 2017;21:1-20.
5. Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol 2008;21:70-83.
6. Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P45-derived eicosanoids and heart function. Pharmacol Ther 2017;179:47-83.
7. Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metabol Toxicol 2006;2:875-94.
8. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013;138:103-41.
9. Morrison HG, Oleksiak MF, Cornell NW, Sogin ML, Stegeman JJ. Identification of cytochrome P-450 1A (CYP1A) genes from two teleost fish, toadfish (Opsanus tau) and scup (Stenotomus chrysops), and phylogenetic analysis of CYP1A genes. Biochem J 1995;308: 97-104.
10. Ueda R, Iketaki H, Nagata K, Kimura S, Gonzalez FJ, Kusano K, et al. A common regulatory region functions bidirectionally in transcriptional activation of the human CYP1A1 and CYP1A2 genes. Mol Pharmacol 2006;69:1924-30.
11. Kawakami H, Ohtsuki S, Kamiie J, Suzuki T, Abe T, Terasaki T. Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with in silico target peptide selection. J Pharm Sci 2011;100:341-52.
12. Stiborova M, Martinek V, Rydlova H, Koblas T, Hodek P. Expression of cytochrome P450 1A1 and its contribution to oxidation of a potential human carcinogen 1-phenylazo-2-naphthol (Sudan I) in human livers. Cancer Lett 2005;220:145-54.
13. Zhou SF, Wang B, Yang LP, Liu JP. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev 2010;42:268-354.
14. Rendic S, Guengerich FP. Contributions of human enzymes in carcinogen metabolism. Chem Res Toxicol 2012;25:1316-83.
15. Gelhaus SL, Harvey RG, Penning TM, Blair IA. Regulation of benzo [a]pyrene-mediated DNA-and glutathione-adduct formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in human lung cells. Chem Res Toxicol 2011;24:89-98.
16. Stiborova M, Levova K, Barta F, Shi Z, Frei E, Schmeiser HH, et al. Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol Sci 2012;125:345-58.
17. Cheung C, Loy S, Li GX, Liu AB, Yang CS. Rapid induction of colon carcinogenesis in CYP1A-humanized mice by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and dextran sodium sulfate. Carcinogenesis 2011;32:233-9.
18. Oda Y, Aryal P, Terashita T, Gillam EM, Guengerich FP, Shimada T. Metabolic activation of heterocyclic amines and other procarcinogens in Salmonella typhimurium umu tester strains expressing human cytochrome P4501A1, 1A2, 1B1, 2C9, 2D6, 2-1, and 3A4 and human NADPH-P450 reductase and bacterial O-acetyltransferase. Mutat Res 2001;492:81-90.
19. von Bahr C, Ursing C, Yasui N, Tybring G, Bertilsson L, Rojdmark S. Fluvoxamine but not citalopram increases serum melatonin in healthy subjectsdan indication that cytochrome P450 CYP1A2 and CYP2C19 hydroxylate melatonin. Eur J Clin Pharmacol 2000;56:123-7.
20. Chen H, Howald WN, Juchau MR. Biosynthesis of all-trans-retinoic acid from all-trans-retinol: catalysis of all-trans-retinol oxidation by human P-450 cytochromes. Drug Metab Dispos 2000;28:315-22.
21. Moghaddam M, Motoba K, Borhan B, Pinot F, Hammock BD. Novel metabolic pathways for linoleic and arachidonic acid metabolism. Biochim Biophys Acta 1996;1290:327-39.
22. Moran JH, Mitchell LA, Bradbury JA, Qu W, Zeldin DC, Schnellmann RG, et al. Analysis of the cytotoxic properties of linoleic acid metabolites produced by renal and hepatic P450s. Toxicol Appl Pharmacol 2000;168:268-79.
23. Yun CH, Ahn T, Guengerich FP, Yamazaki H, Shimada T. Phospholipase D activity of cytochrome P450 in human liver endoplasmic reticulum. Arch Biochem Biophys 1999;367:81-8.
24. Sinclair PR, Gorman N, Tsyrlov IB, Fuhr U, Walton HS, Sinclair JF. Uroporphyrinogen oxidation catalyzed by human cytochromes P450. Drug Metab Dispos 1998;26:1019-25.
25. Schwarz D, Kisselev P, Schunck WH, Chernogolov A, Boidol W, Cascorbi I, et al. Allelic variants of human cytochrome P450 1A1 (CYP1A1): effect of T461N and I462V substitutions on steroid hydroxylase specificity. Pharmacogenetics 2000;10:519-30.
26. Niwa T, Yabusaki Y, Honma K, Matsuo N, Tatsuta K, Ishibashi F, et al. Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. Xenobiotica 1998; 28:539-47.
27. Spink DC, Hayes CL, Young NR, Christou M, Sutter TR, Jefcoate CR, et al. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on estrogen metabolism in MCF-7 breast cancer cells: evidence for induction of a novel 17β-estradiol 4-hydroxylase. J Steroid Biochem Mol Biol 1994;51:251-8.
28. Ohe T, Hirobe M, Mashino T. Novel metabolic pathway of estrone and 17β-estradiol catalyzed by cytochrome P-450. Drug Metab Dispos 2000;28:110-2.
29. Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 2002;34:83-448.
30. Palacios S, Mejia A. Progestogen safety and tolerance in hormonal replacement therapy. Expert Opin Drug Saf 2016;15:1515-25.
31. Weng JH, Chung BC. Nongenomic actions of neurosteroid pregnenolone and its metabolites. Steroids 2016;111:54-9.
32. Milczarek R, Sokolowska E, Rybakowska I, Kaletha K, Klimek J. Paraquat inhibits progesterone synthesis in human placental mitochondria. Placenta 2016;43:41-6.
33. Tuckey RC. Progesterone synthesis by the human placenta. Placenta 2005;26:273-81.
34. Doostzadeh J, Flinois JP, Beaune P, Morfin R. Pregnenolone-7bhydroxylating activity of human cytochrome P450-1A1. J Steroid Biochem Mol Biol 1997;60:147-52.
35. Morel Y, Roucher F, Plotton I, Goursaud C, Tardy V, Mallet D. Evolution of steroids during pregnancy: maternal, placental and fetal synthesis. Ann Endocrinol 2016;77:82-9.
36. Di Renzo GC, Giardina I, Clerici G, Brillo E, Gerli S. Progesterone in normal and pathological pregnancy. Horm Mol Biol Clin Investig 2016;27:35-48.
37. Di Renzo GC, Giardina I, Clerici G, Mattei A, Alajmi AH, Gerli S. The role of progesterone in maternal and fetal medicine. Gynecol Endocrinol 2012;28:925-32.
38. Schwartz N, Xue X, Elovitz MA, Dowling O, Metz CN. Progesterone suppresses the fetal inflammatory response ex vivo. Am J Obstet Gynecol 2009;201:211. e1-9.
39. Fanchin R, Ayoubi JM, Olivennes F, Righini C, de Ziegler D, Frydman R. Hormonal influence on the uterine contractility during ovarian stimulation. Hum Reprod 2000;15 Suppl 1:90-100.
40. Liu J, Matsuo H, Laoag-Fernandez JB, Xu Q, Maruo T. The effects of progesterone on apoptosis in the human trophoblast-derived HTR-8/SV neo cells. Mol Hum Reprod 2007;13:869-74.
41. Czajkowski K, Sienko J, Mogilinski M, Bros M, Szczecina R, Czajkowska A. Uteroplacental circulation in early pregnancy complicated by threatened abortion supplemented with vaginal micronized progesterone or oral dydrogesterone. Fertil Steril 2007; 87:613-8.
42. Baulieu E, Schumacher M. Progesterone as a neuroactive neurosteroid, with special reference to the effect of progesterone on myelination. Steroids 2000;65:605-12.
43. Ford O, Lethaby A, Roberts H, Mol BW. Progesterone for premenstrual syndrome. Cochrane Database Syst Rev 2012;3:CD003415.
44. Liang YX, Liu L, Jin ZY, Liang XH, Fu YS, Gu XW, et al. The high concentration of progesterone is harmful for endometrial receptivity and decidualization. Sci Rep 2018;8:712.
45. Aufrere MB, Benson H. Progesterone: an overview and recent advances. J Pharm Sci 1976;65:783-800.
46. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev 2007;87:905-31.
47. Kuhl H. Pharmacology of estrogens and progestogens: influence of different routes of administration. Climacteric 2005;8 Suppl 1: 3-63.
48. Escande A, Pillon A, Servant N, Cravedi JP, Larrea F, Muhn P, et al. Evaluation of ligand selectivity using reporter cell lines stably expressing estrogen receptor alpha or beta. Biochem Pharmacol 2006;71:1459-69.
49. Ruggiero RJ, Likis FE. Estrogen: physiology, pharmacology, and formulations for replacement therapy. J Midwifery Women’s Health 2002;47:130-8.
50. Shou M, Korzekwa KR, Brooks EN, Krausz KW, Gonzalez FJ, Gelboin HV. Role of human hepatic cytochrome P450 1A2 and 3A4 in the metabolic activation of estrone. Carcinogenesis 1997;18: 207-14.
51. Yamazaki H, Shaw PM, Guengerich FP, Shimada T. Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Chem Res Toxicol 1998;11:659-65.
52. Ryan KJ. Biochemistry of aromatase: significance to female reproductive physiology. Cancer Res 1982;42. 3342se44s.
53. Satoh T, Fujita KI, Munakata H, Itoh S, Nakamura K, Kamataki T, et al. Studies on the interactions between drugs and estrogen: analytical method for prediction system of gynecomastia induced by drugs on the inhibitory metabolism of estradiol using Escherichia coli coexpressing human CYP3A4 with human NADPH-cytochrome P450 reductase. Anal Biochem 2000;286:179-86.
54. Hakkola J, Pasanen M, Pelkonen O, Hukkanen J, Evisalmi S, Anttila S, et al. Expression of CYP1B1 in human adult and fetal tissues and differential inducibility of CYP1B1 and CYP1A1 by Ah receptor ligands in human placenta and cultured cells. Carcinogenesis 1997;18:391-7.
55. Hayes CL, Spink DC, Spink BC, Cao JQ, Walker NJ, Sutter TR. 17bEstradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc Natl Acad Sci U S A 1996;93:9776-81.
56. Shet MS, McPhaul M, Fisher CW, Stallings NR, Estabrook RW. Metabolism of the antiandrogenic drug (Flutamide) by human CYP1A2. Drug Metab Dispos 1997;25:1298-303.
57. Stresser DM, Kupfer D. Prosubstrates of CYP3A4, the major human hepatic cytochrome P450: transformation into substrates by other P450 isoforms. Biochem Pharmacol 1998;55:1861-71.
58. Stresser DM, Kupfer D. Catalytic characteristics of CYP3A4: requirement for a phenolic function in ortho hydroxylation of estradiol and mono-O-demethylated methoxychlor. Biochemistry 1997;36:2203-10.
59. Mooradian AD, Morley JE, Korenman SG. Biological actions of androgens. Endocr Rev 1987;8:1-28.
60. Yamazaki H, Shimada T. Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys 1997;346:161-9.
61. Auld F, Maschauer EL, Morrison I, Skene DJ, Riha RL. Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med Rev 2017;34:10-22.
62. Matheson E, Hainer BL. Insomnia: pharmacologic therapy. Am Fam Physician 2017;96:29-35.
63. Ma X, Idle JR, Krausz KW, Gonzalez FJ. Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos 2005; 33:489-94.
64. Li C, Li G, Tan DX, Li F, Ma X. A novel enzyme-dependent melatonin metabolite in humans. J Pineal Res 2013;54:100-6.
65. Means AL, Gudas LJ. The roles of retinoids in vertebrate development. Annu Rev Biochem 1995;64:201-33.
66. Soprano DR, Soprano KJ. Retinoids as teratogens. Annu Rev Nutr 1995;15:111-32.
67. Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 2001; 14:611-50.
68. Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011;111:6064-119.
69. Phillips JD, Kushner JP, Bergonia HA, Franklin MR. Uroporphyria in the Cyp1a2-/- mouse. Blood Cells Mol Dis 2011;47:249-54.
70. Gunes A, Dahl ML. Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics 2008;9:625-37.
71. Catteau A, Bechtel YC, Poisson N, Bechtel PR, Bonaiti-Pellie C. A population and family study of CYP1A2 using caffeine urinary metabolites. Eur J Clin Pharmacol 1995;47:423-30.
72. Xu M, Ju W, Hao H, Wang G, Li P. Cytochrome P450 2J2: distribution, function, regulation, genetic polymorphisms and clinical significance. Drug Metab Rev 2013;45:311-52.
73. Zheng H, Zhao Y. Association of CYP1A1 Mspl polymorphism in the esophageal cancer risk: a meta-analysis in the Chinese population. Eur J Med Res 2015;20:46.
74. Xu JL, Xia R, Sun L, Min X, Sun ZH, Liu C, et al. Association of CYP1A1 Mspl polymorphism with oral cancer risk in Asian populations: a meta-analysis. Genet Mol Res 2016;15:gmr7688.
75. Liu H, Jia J, Mao X, Lin Z. Association of CYP1A1 and GSTM1 polymorphisms with oral cancer susceptibility: a meta-analysis. Medicine (Baltim) 2015;94:e895.
76. Zeng W, Li Y, Lu E, Ma M. CYP1A1 rs1048943 and rs4646903 polymorphisms associated with laryngeal cancer susceptibility among Asian populations: a meta-analysis. J Cell Mol Med 2016;20: 287-93.
77. Cleary SP, Cotterchio M, Shi E, Gallinger S, Harper P. Cigarette smoking, genetic variants in carcinogen-metabolizing enzymes, and colorectal cancer risk. Am J Epidemiol 2010;172:1000-14.
78. Ding G, Xu W, Liu H, Zhang M, Huang Q, Liao Z. CYP1A1 Mspl polymorphism is associated with prostate cancer susceptibility: evidence from a meta-analysis. Mol Biol Rep 2013;40:3483-91.
79. Kleine JP, CamargoeKosugi CM, Carvalho CV, Silva FC, Silva ID. Analysis of CYP1A1 and COMT polymorphisms in women with cervical cancer. Genet Mol Res 2015;14:18965-73.
80. Roszak A, Lianeri M, Sowinska A, Jagodzinski PP. CYP1A1 Ile462Val polymorphism as a risk factor in cervical cancer development in the Polish population. Mol Diagn Ther 2014;18:445-50.
81. Wang Y, Kong CZ, Zhang Z, Yang CM, Li J. Relationships between CYP1A1 genetic polymorphisms and bladder cancer risk: a metaanalysis. DNA Cell Biol 2014;33:171-81.
82. Liu HX, Li J, Ye BG. Correlation between gene polymorphisms of CYP1A1, GSTP1, ERCC2, XRCC1, and XRCC3 and susceptibility to lung cancer. Genet Mol Res 2016;15. gmr15048813.
83. Hussein AG, Pasha HF, El-Shahat HM, Gad DM, Toam MM. CYP1A1 gene polymorphisms and smoking status as modifier factors for lung cancer risk. Gene 2014;541:26-30.
84. Wang CD, Chen N, Huang L, Wang JR, Chen ZY, Jiang YM, et al. Impact of CYP1A1 polymorphisms on susceptibility to chronic obstructive pulmonary disease: a meta-analysis. BioMed Res Int 2015;2015:942958.
85. Li J, Chen Y, Mo S, Nai D. Potential Positive Association between cytochrome P450 1A1 gene polymorphisms and recurrent pregnancy loss: a meta-analysis. Ann Hum Genet 2017;81:161-73.
86. Pasalic D, Marinkovic N. Genetic polymorphisms of the CYP1A1, GSTM1, and GSTT1 enzymes and their influence on cardiovascular risk and lipid profile in people who live near a natural gas plant. Arh Hig Rada Toksikol 2017;68:46-52.
87. Chen XP, Xu DF, Xu WH, Ma ZC, Yao J, Fu SM. Association studies of CYP1A1 exon7 polymorphism and -GSTM1 interaction with esophageal cancer risk: a meta-analysis in the Chinese population. Clin Lab 2016;62:1795-802.
88. Yun YX, Wang YP, Wang P, Cui LH, Wang KJ, Zhang JY, et al. CYP1A1 genetic polymorphisms and risk for esophageal cancer: a case-control study in central China. Asian Pac J Cancer Prev APJCP 2014;14:6507-12.
89. Liu C, Jiang Z, Deng QX, Zhao YN. Meta-analysis of association studies of CYP1A1 genetic polymorphisms with digestive tract cancer susceptibility in Chinese. Asian Pac J Cancer Prev APJCP 2014; 15:4689-95.
90. Shen FF, Zhou FY, Xue QS, Pan Y, Zheng L, Zhang H, et al. Association between CYP1A1 polymorphisms and esophageal cancer: a meta-analysis. Mol Biol Rep 2013;40:6035-42.
91. Ren A, Qin T, Wang Q, Du H, Zhong D, Hua Y, et al. Cytochrome P450 1A1 gene polymorphisms and digestive tract cancer susceptibility: a meta-analysis. J Cell Mol Med 2016;20:1620-31.
92. Xu L, Wei H. Association between CYP1A1 2454A > G polymorphism and colorectal cancer risk: a meta-analysis. J Cancer Res Ther 2015;11:760-4.
93. Li H, Xiao D, Hu L, He T. Association of CYP1A1 polymorphisms with prostate cancer risk: an updated meta-analysis. Mol Biol Rep 2012;39:10273-84.
94. Koda M, Iwasaki M, Yamano Y, Lu X, Katoh T. Association between NAT2, CYP1A1, and CYP1A2 genotypes, heterocyclic aromatic amines, and prostate cancer risk: a case control study in Japan. Environ Health Prev Med 2017;22:72.
95. Shin A, Kang D, Choi JY, Lee KM, Park SK, Noh DY, et al. Cytochrome P450 1A1 (CYP1A1) polymorphisms and breast cancer risk in Korean women. Exp Mol Med 2007;39:361-6.
96. Diergaarde B, Potter JD, Jupe ER, Manjeshwar S, Shimasaki CD, Pugh TW, et al. Polymorphisms in genes involved in sex hormone metabolism, estrogen plus progestin hormone therapy use, and risk of postmenopausal breast cancer. Cancer Epidemiol Biomark Prev 2008;17:1751-9.
97. Sergentanis TN, Economopoulos KP. Four polymorphisms in cytochrome P450 1A1 (CYP1A1) gene and breast cancer risk: a metaanalysis. Breast Canc Res Treat 2010;122:459-69.
98. Martinez-Ramirez OC, Perez-Morales R, Castro C, Flores-Diaz A, Soto-Cruz KE, Astorga-Ramos A, et al. Polymorphisms of catechol estrogens metabolism pathway genes and breast cancer risk in Mexican women. Breast 2013;22:335-43.
99. Fan W, Huang Z, Xiao Z, Li S, Ma Q. The cytochrome P4501A1 gene polymorphisms and endometriosis: a meta-analysis. J Assist Reprod Genet 2016;33:1373-83.
100. Singh A, Koner BC, Ray PC, Prasad S, Jamatia E, Masroor M, et al. Effect of CYP1A1 gene polymorphism and psychological distress on seminal analysis parameters. Reprod Health 2016;13:60.
101. Meng FD, Ma P, Sui CG, Tian X, Jiang YH. Association between cytochrome P450 1A1 (CYP1A1) gene polymorphisms and the risk of renal cell carcinoma: a meta-analysis. Sci Rep 2015;5:8108.
102. Li L, Li JG, Liu CY, Ding YJ. Effect of CYP1A1 and GSTM1 genetic polymorphisms on bone tumor susceptibility. Genet Mol Res 2015; 14:16600-7.
103. Lu J, Zhao Q, Zhai YJ, He HR, Yang LH, Gao F, et al. Genetic polymorphisms of CYP1A1 and risk of leukemia: a meta-analysis. OncoTargets Ther 2015;8:2883-902.
104. Polonikov AV, Bushueva OY, Bulgakova IV, Freidin MB, Churnosov MI, Solodilova MA, et al. A comprehensive contribution of genes for aryl hydrocarbon receptor signaling pathway to hypertension susceptibility. Pharmacogenetics Genom 2017;27:57-69.
105. Esteller M, Garcia A, Martinez-Palones JM, Xercavins J, Reventos J. Germ line polymorphisms in cytochrome-P450 1A1 (C4887 CYP1A1) and methylenetetrahydrofolate reductase (MTHFR) genes and endometrial cancer susceptibility. Carcinogenesis 1997;18: 2307-11.
106. Hidaka A, Sasazuki S, Matsuo K, Ito H, Charvat H, Sawada N, et al. CYP1A1, GSTM1 and GSTT1 genetic polymorphisms and gastric cancer risk among Japanese: a nested case-control study within a large-scale population-based prospective study. Int J Cancer 2016; 139:759-68.
107. Oliveira CB, Cardoso-Filho C, Bossi LS, Lourenco GJ, CostaGurgel MS, Lima CS. Association of CYP1A1 A4889G and T6235C polymorphisms with the risk of sporadic breast cancer in Brazilian women. Clinics (Sao Paulo) 2015;70:680-5.
108. Khvostova EP, Pustylnyak VO, Gulyaeva LF. Genetic polymorphism of estrogen metabolizing enzymes in Siberian women with breast cancer. Genet Test Mol Biomark 2012;16:167-73.
109. Zhao Y, Chen ZX, Rewuti A, Ma YS, Wang XF, Xia Q, et al. Quantitative assessment of the influence of cytochrome P450 1A2 gene polymorphism and colorectal cancer risk. PLoS One 2013;8. e71481.
110. Imene A, Maurice AJ, Arij M, Sofia P, Saad S. Breast cancer association with CYP1A2 activity and gene polymorphismsda preliminary case-control study in Tunisia. Asian Pac J Cancer Prev APJCP 2015;16:3559-63.
111. Ayari I, Fedeli U, Saguem S, Hidar S, Khlifi S, Pavanello S. Role of CYP1A2 polymorphisms in breast cancer risk in women. Mol Med Rep 2013;7:280-6.
112. Klemm M, Eidens M, Lorenz M, Prause S, Weise A, Dahmen N, et al. Development of a high throughput single nucleotide polymorphism screening method for the cytochrome P450 1A2 polymorphisms CYP1A2*1C and CYP1A2*1F: are they useful as predictive markers in mental disorders?. Clin Lab 2010;56:473-80.
113. Tian Z, Li YL, Zhao L, Zhang CL. Role of CYP1A2 1F polymorphism in cancer risk: evidence from a meta-analysis of 46 casecontrol studies. Gene 2013;524:168-74.
114. Dumas I, Diorio C. Estrogen pathway polymorphisms and mammographic density. Anticancer Res 2011;31:4369-86.
115. Sun WX, Chen YH, Liu ZZ, Xie JJ, Wang W, Du YP, et al. Association between the CYP1A2 polymorphisms and risk of cancer: a meta-analysis. Mol Genet Genom 2015;290:709-25.
116. Ma Z, Guo W, Gong T, Niu HJ, Wang RW, Jiang YG. CYP1A2 rs762551 polymorphism contributes to risk of lung cancer: a metaanalysis. Tumour Biol 2014;35:2253-7.
117. Pavanello S, Fedeli U, Mastrangelo G, Rota F, Overvad K, RaaschouNielsen O, et al. Role of CYP1A2 polymorphisms on lung cancer risk in a prospective study. Cancer Genet 2012;205:278-84.
118. Bu ZB, Ye M, Cheng Y, Wu WZ. Four polymorphisms in the cytochrome P450 1A2 (CYP1A2) gene and lung cancer risk: a metaanalysis. Asian Pac J Cancer Prev APJCP 2014;15:5673-9.
119. Zeng Y, Jiang HY, Wei L, Xu WD, Wang YJ, Wang YD, et al. Association between the CYP1A2 rs762551 polymorphism and bladder cancer susceptibility: a meta-analysis based on case-control studies. Asian Pac J Cancer Prev APJCP 2015;16:7249-54.
120. Vukovic V, Ianuale C, Leoncini E, Pastorino R, Gualano MR, Amore R, et al. Lack of association between polymorphisms in the CYP1A2 gene and risk of cancer: evidence from meta-analyses. BMC Canc 2016;16:83.
121. Wang H, Zhang Z, Han S, Lu Y, Feng F, Yuan J. CYP1A2 rs762551 polymorphism contributes to cancer susceptibility: a meta-analysis from 19 case-control studies. BMC Canc 2012;12:528.
122. Song YL, Wang L, Ren JC, Xu ZH. CYP1A2-163C/A (rs762551) polymorphism and bladder cancer risk: a case-control study. Genet Mol Res 2016;15:gmr6298.
123. Stasiukonyte N, Liutkeviciene R, Vilkeviciute A, Banevicius M, Kriauciuniene L. Associations between rs4244285 and rs762551 gene polymorphisms and age-related macular degeneration. Ophthalmic Genet 2017;38:357-64.
124. Guessous I, Dobrinas M, Kutalik Z, Pruijm M, Ehret G, Maillard M, et al. Caffeine intake and CYP1A2 variants associated with high caffeine intake protect non-smokers from hypertension. Hum Mol Genet 2012;21:3283-92.
125. Kukongviriyapan V. Genetic polymorphism of drug metabolizing enzymes in association with risk of bile duct cancer. Asian Pac J Cancer Prev APJCP 2012;13 Suppl:7-15.
126. de Brito RB, de Carvalho Araujo L, Diniz MJA, de Castro Georg R, Nabout JC, Vianelo RP, et al. The CYP1A2 e163C>A polymorphism is associated with super-refractory schizophrenia. Schizophr Res 2015;169:502-3.
127. Sasaki S, Limpar M, Sata F, Kobayashi S, Kishi R. Interaction between maternal caffeine intake during pregnancy and CYP1A2 C164A polymorphism affects infant birth size in the Hokkaido study. Pediatr Res 2017;82:19-28.
128. Zhenzhen L, Xianghua L, Ning S, Zhan G, Chuanchuan R, Jie L. Current evidence on the relationship between three polymorphisms in the CYP1A2 gene and the risk of cancer. Eur J Cancer Prev 2013;22: 607-19.
129. Matakova T, Halasova E, Dzian A, Hruby R, Halasa M, Javorka K, et al. Associations of CYP1A2 polymorphisms with the risk haplotypes in lung cancer in the Slovak population. Adv Exp Med Biol 2016;911:23-32.
130. Liu Q, Qian Y, Li P, Zhang S, Wang Z, Liu J, et al. The combined therapeutic effects of 131iodine-labeled multifunctional copper sulfide-loaded microspheres in treating breast cancer. Acta Pharm Sin B 2018;8:371-80.
131. Rhodes A, Jasani B, Balaton AJ, Barnes DM, Miller KD. Frequency of oestrogen and progesterone receptor positivity by immunohistochemical analysis in 7016 breast carcinomas: correlation with patient age, assay sensitivity, threshold value, and mammographic screening. J Clin Pathol 2000;53:688-96.
132. Yip CH, Rhodes A. Estrogen and progesterone receptors in breast cancer. Future Oncol 2014;10:2293-301.
133. Zhao YN, Zhang W, Chen YC, Fang F, Liu XQ. Relative imbalances in the expression of catechol-O-methyltransferase and cytochrome P450 in breast cancer tissue and their association with breast carcinoma. Maturitas 2012;72:139-45.
134. Maggiolini M, Bonofiglio D, Pezzi V, Carpino A, Marsico S, Rago V, et al. Aromatase overexpression enhances the stimulatory effects of adrenal androgens on MCF7 breast cancer cells. Mol Cell Endocrinol 2002;193:13-8.
135. Zhang L, Gu L, Qian B, Hao X, Zhang W, Wei Q, et al. Association of genetic polymorphisms of ER-alpha and the estradiol-synthesizing enzyme genes CYP17 and CYP19 with breast cancer risk in Chinese women. Breast Canc Res Treat 2009;114:327-38.
136. van Landeghem AA, Poortman J, Nabuurs M, Thijssen JH. Endogenous concentration and subcellular distribution of estrogens in normal and malignant human breast tissue. Cancer Res 1985;45: 2900-6.
137. Lonning PE, Helle H, Duong NK, Ekse D, Aas T, Geisler J. Tissue estradiol is selectively elevated in receptor positive breast cancers while tumour estrone is reduced independent of receptor status. J Steroid Biochem Mol Biol 2009;117:31-41.
138. Tsuchiya Y, Nakajima M, Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 2005;227:115-24.
139. Cho SJ, Ning M, Zhang Y, Rubin LH, Jeong H. 17β-Estradiol upregulates UDP-glucuronosyltransferase 1A9 expression via estrogen receptor a. Acta Pharm Sin B 2016;6:504-9.
140. Zhu BT, Conney AH. Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 1998;19:1-27.
141. Yager JD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol 1996;36:203-32.
142. Kisselev P, Schunck WH, Roots I, Schwarz D. Association of CYP1A1 polymorphisms with differential metabolic activation of 17beta-estradiol and estrone. Cancer Res 2005;65:2972-8.
143. He Y, Peng S, Wang J, Chen H, Cong X, Chen A, et al. Ailanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer. Nat Commun 2016;7:13122.
144. Shafi AA, Yen AE, Weigel NL. Androgen receptors in hormonedependent and castration-resistant prostate cancer. Pharmacol Ther 2013;140:223-38.
145. Toledo-Pereyra LH. Discovery in surgical investigation: the essence of charles brenton huggins. J Investig Surg 2001;14:251-2.
146. Murata M, Watanabe M, Yamanaka M, Kubota Y, Ito H, Nagao M, et al. Genetic polymorphisms in cytochrome P450 (CYP) 1A1, CYP1A2, CYP2-1, glutathione S-transferase (GST) M1 and GSTT1 and susceptibility to prostate cancer in the Japanese population. Cancer Lett 2001;165:171-7.
147. Suzuki K, Matsui H, Nakazato H, Koike H, Okugi H, Hasumi M, et al. Association of the genetic polymorphism in cytochrome P450 (CYP) 1A1 with risk of familial prostate cancer in a Japanese population: a case-control study. Cancer Lett 2003;195:177-83.
148. Tang L, Platek ME, Yao S, Till C, Goodman PJ, Tangen CM, et al. Associations between polymorphisms in genes related to estrogen metabolism and function and prostate cancer risk: results from the prostate cancer prevention trial. Carcinogenesis 2018;39:125-33.
149. Harkonen PL, Makela SI. Role of estrogens in development of prostate cancer. J Steroid Biochem Mol Biol 2004;92:297-305.
150. Risbridger GP, Bianco JJ, Ellem SJ, McPherson SJ. Oestrogens and prostate cancer. Endocr Relat Cancer 2003;10:187-91.
151. Vermeulen A, Kaufman JM, Goemaere S, van Pottelberg I. Estradiol in elderly men. Aging Male 2002;5:98-102.
152. Baulieu EE. Androgens and aging men. Mol Cell Endocrinol 2002; 198:41-9.
153. Krieg M, Nass R, Tunn S. Effect of aging on endogenous level of 5 alpha-dihydrotestosterone, testosterone, estradiol, and estrone in epithelium and stroma of normal and hyperplastic human prostate. J Clin Endocrinol Metab 1993;77:375-81.
154. Rohrmann S, Platz EA, Selvin E, Shiels MS, Joshu CE, Menke A, et al. The prevalence of low sex steroid hormone concentrations in men in the third national health and nutrition examination survey (NHANES III). Clin Endocrinol (Oxf) 2011;75:232-9.
155. Horvath LG, Henshall SM, Lee CS, Head DR, Quinn DI, Makela S, et al. Frequent loss of estrogen receptor-beta expression in prostate cancer. Cancer Res 2001;61:5331-5.
156. Leav I, Lau KM, Adams JY, McNeal JE, Taplin ME, Wang J, et al. Comparative studies of the estrogen receptors beta and alpha and the androgen receptor in normal human prostate glands, dysplasia, and in primary and metastatic carcinoma. Am J Pathol 2001;159:79-92.
157. Ho SM. Estrogens and anti-estrogens: key mediators of prostate carcinogenesis and new therapeutic candidates. J Cell Biochem 2004; 91:491-503.
158. Yager JD. Endogenous estrogens as carcinogens through metabolic activation. J Natl Cancer Inst Monogr 2000;2000:67-73.
159. Amankwah EK, Friedenreich CM, Magliocco AM, Brant R, Speidel T, Rahman W, et al. Hormonal and reproductive risk factors for sporadic microsatellite stable and unstable endometrial tumors. Cancer Epidemiol Biomark Prev 2013;22:1325-31.
160. Sasano H, Harada N. Intratumoral aromatase in human breast, endometrial, and ovarian malignancies. Endocr Rev 1998;19: 593-607.
161. Anderson E. Ovarian steroids and control of proliferation in the normal human breast. Breast 2001;10:273-8.
162. Khera M. Male hormones and men’s quality of life. Curr Opin Urol 2016;26:152-7.
163. Singh J, O’Neill C, Handelsman DJ. Induction of spermatogenesis by androgens in gonadotropin-deficient (hpg) mice. Endocrinology 1995;136:5311-21.
164. Cooper TG. Epididymis and sperm function. Andrologia 1996;28 Suppl 1:57-9.
165. Gilibili RR, Vogl AW, Chang TK, Bandiera SM. Localization of cytochrome P450 and related enzymes in adult rat testis and downregulation by estradiol and bisphenol A. Toxicol Sci 2014;140:26-39.
166. Zhan P, Wang Q, Qian Q, Wei SZ, Yu LK. CYP1A1 Mspl and exon7 gene polymorphisms and lung cancer risk: an updated meta-analysis and review. J Exp Clin Cancer Res 2011;30:99.
167. Lu Y, Zhang XL, Xie L, Li TJ, He Y, Peng QL, et al. Lack of association between CYP1A1 polymorphisms and risk of bladder cancer: a meta-analysis. Asian Pac J Cancer Prev APJCP 2014;15: 4071-7.
168. Gurbuz B, Yalti S, Ozden S, Ficicioglu C. High basal estradiol level and FSH/LH ratio in unexplained recurrent pregnancy loss. Arch Gynecol Obstet 2004;270:37-9.
169. Stejskalova L, Pavek P. The function of cytochrome P450 1A1 enzyme (CYP1A1) and aryl hydrocarbon receptor (AhR) in the placenta. Curr Pharmaceut Biotechnol 2011;12:715-30.
170. Liu J, Huang F, He HW. Melatonin effects on hard tissues: bone and tooth. Int J Mol Sci 2013;14:10063-74.
171. Masters A, Pandi-Perumal SR, Seixas A, Girardin JL, McFarlane SI. Melatonin, the hormone of darkness: from sleep promotion to Ebola treatment. Brain Disord Ther 2014;4. 1000151.
172. Michalowska M, Znorko B, Kaminski T, Oksztulska-Kolanek E, Pawlak D. New insights into tryptophan and its metabolites in the regulation of bone metabolism. J Physiol Pharmacol 2015;66: 779-91.
173. Srinivasan V, Smits M, Spence W, Lowe AD, Kayumov L, PandiPerumal SR, et al. Melatonin in mood disorders. World J Biol Psychiatry 2006;7:138-51.
174. Duan KM, Ma JH, Wang SY, Huang Z, Zhou Y, Yu H. The role of tryptophan metabolism in postpartum depression. Metab Brain Dis 2018;33:647-60.
175. Iskakova M, Karbyshev M, Piskunov A, Rochette-Egly C. Nuclear and extranuclear effects of vitamin A. Can J Physiol Pharmacol 2015;93:1065-75.
176. Pineau T, Fernandez-Salguero P, Lee SS, McPhail T, Ward JM, Gonzalez FJ. Neonatal lethality associated with respiratory distress in mice lacking cytochrome P450 1A2. Proc Natl Acad Sci U S A 1995; 92:5134-8.
177. Choque B, Catheline D, Rioux V, Legrand P. Linoleic acid: between doubts and certainties. Biochimie 2014;96:14-21.
178. Khosla P, Fungwe TV. Conjugated linoleic acid: effects on plasma lipids and cardiovascular function. Curr Opin Lipidol 2001;12. 31-24.
179. van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr 2017;1859:1558-72.
180. Gorman N, Walton HS, Sinclair JF, Sinclair PR. CYP1A-catalyzed uroporphyrinogen oxidation in hepatic microsomes from nonmammalian vertebrates (chick and duck embryos, scup and alligator). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1998;121:405-12.
181. Smith AG, Davies R, Dalton TP, Miller ML, Judah D, Riley J, et al. Intrinsic hepatic phenotype associated with the Cyp1a2 gene as shown by cDNA expression microarray analysis of the knockout mouse. EHP Toxicogenomics 2003;111:45-51.
182. Uno S, Nebert DW, Makishima M. Cytochrome P450 1A1 (CYP1A1) protects against nonalcoholic fatty liver disease caused by western diet containing benzo[a]pyrene in mice. Food Chem Toxicol 2018;113:73-82.