Yue Wang, Zihui Fang, Mei Hong, Da Yang, Wen Xie. Long-noncoding RNAs (lncRNAs) in drug metabolism and disposition, implications in cancer chemo-resistance[J]. Acta Pharmaceutica Sinica B, 2020, 10(1): 105-112

Long-noncoding RNAs (lncRNAs) in drug metabolism and disposition, implications in cancer chemo-resistance
Yue Wanga, Zihui Fanga,b, Mei Hongb, Da Yanga,c,d, Wen Xiea,e
a Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA;
b College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
c University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA;
d Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
e Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
Drug metabolism is an orchestrated process in which drugs are metabolized and disposed through a series of specialized enzymes and transporters. Alterations in the expression and/or activity of these enzymes and transporters can affect the bioavailability (pharmacokinetics, or PK) and therapeutic efficacy (pharmacodynamics, or PD) of drugs. Recent studies have suggested that the long non-coding RNAs (lncRNAs) are highly relevant to drug metabolism and drug resistance, including chemoresistance in cancers, through the regulation of drug metabolism and disposition related genes. This review summarizes the regulation of enzymes, transporters, or regulatory proteins involved in drug metabolism by lncRNAs, with a particular emphasis on drug metabolism and chemo-resistance in cancer patients. The perspective strategies to integrate multi-dimensional pharmacogenomics data for future in-depth analysis of drug metabolism related lncRNAs are also proposed. Understanding the role of lncRNAs in drug metabolism will not only facilitate the identification of novel regulatory mechanisms, but also enable the discovery of lncRNA-based biomarkers and drug targets to personalize and improve the therapeutic outcome of patients, including cancer patients.
Key words:    LncRNA    Drug metabolism    Chemo-resistance    Xenobiotic receptor    Regulation   
Received: 2019-06-02     Revised: 2019-08-23
DOI: 10.1016/j.apsb.2019.09.011
Funds: Our original work described in this review article was supported in part by NIH grant ES030429 (to W.X.) and CA222274 (to D.Y.). W.X. was supported in part by the Joseph Koslow Endowed Professorship from the University of Pittsburgh School of Pharmacy.
Corresponding author: Da Yang, Wen Xie;
Author description:
PDF(KB) Free
Yue Wang
Zihui Fang
Mei Hong
Da Yang
Wen Xie

1. Leonessa F, Clarke R. ATP binding cassette transporters and drug resistance in breast cancer. Endocr Relat Cancer 2003;10:43-73.
2. Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 2005;28:249-68.
3. Crettol S, Petrovic N, Murray M. Pharmacogenetics of phase I and phase II drug metabolism. Curr Pharmaceut Des 2010;16:204-19.
4. Kim J, Piao HL, Kim BJ, Yao F, Han Z, Wang Y, et al. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet 2018;50:1705-15.
5. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009;458:223-7.
6. Mathieu EL, Belhocine M, Dao LT, Puthier D, Spicuglia S. Functions of lncRNA in development and diseases. Med Sci (Paris) 2014;30:790-6.
7. Qi W, Song X, Li L. Long non-coding RNA-guided regulation in organisms. Sci China Life Sci 2013;56:891-6.
8. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell 2013;154:26-46.
9. Bolha L, Ravnik-Glavac M, Glavac D. Long noncoding RNAs as biomarkers in cancer. Dis Markers 2017;2017:7243968.
10. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 2011;29:742-9.
11. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 2011;30:1956-62.
12. Liu J, Wan L, Lu K, Sun M, Pan X, Zhang P, et al. The long noncoding RNA MEG3 contributes to cisplatin resistance of human lung adenocarcinoma. PLoS One 2015;10:e0114586.
13. Xia Y, He Z, Liu B, Wang P, Chen Y. Downregulation of Meg3 enhances cisplatin resistance of lung cancer cells through activation of the WNT/beta-catenin signaling pathway. Mol Med Rep 2015;12: 4530-7.
14. Zhang J, Liu J, Xu X, Li L. Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer. Cancer Chemother Pharmacol 2017;79:479-87.
15. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neuro Oncol 2013;113:1-11.
16. Silva A, Bullock M, Calin G. The clinical relevance of long noncoding RNAs in cancer. Cancers (Basel) 2015;7:2169-82.
17. Furge LL, Guengerich FP. Cytochrome P450 enzymes in drug metabolism and chemical toxicology: an introduction. Biochem Mol Biol Educ 2006;34:66-74.
18. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013;138:103-41.
19. Hu L, Zhuo W, He YJ, Zhou HH, Fan L. Pharmacogenetics of P450 oxidoreductase: implications in drug metabolism and therapy. Pharmacogenetics Genom 2012;22:812-9.
20. Ortiz de Montellano PR. Cytochrome P450-activated prodrugs. Future Med Chem 2013;5:213-28.
21. Jornada DH, dos Santos Fernandes GF, Chiba DE, de Melo TR, dos Santos JL, Chung MC. The prodrug approach: a successful tool for improving drug solubility. Molecules 2015;21:42.
22. McCarver DG, Hines RN. The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther 2002;300:361-6.
23. Kensler TW, Egner PA, Wang JB, Zhu YR, Zhang BC, Lu PX, et al. Chemoprevention of hepatocellular carcinoma in aflatoxin endemic areas. Gastroenterology 2004;127:S310-8.
24. DeGorter MK, Xia CQ, Yang JJ, Kim RB. Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol 2012;52:249-73.
25. Shi Z, Tiwari AK, Shukla S, Robey RW, Singh S, Kim IW, et al. Sildenafil reverses ABCB1-and ABCG2-mediated chemotherapeutic drug resistance. Cancer Res 2011;71:3029-41.
26. Bellon Caneiro JM, Forcada Jimenez M, Gomez Oliveros L. The ileocecal sphincter in the functional dynamics of the digestive tract: collective review. Rev Esp Enferm Apar Dig 1987;72:745-8.
27. Chen L, Bao Y, Piekos SC, Zhu K, Zhang L, Zhong XB. A transcriptional regulatory network containing nuclear receptors and long noncoding RNAs controls basal and drug-induced expression of cytochrome P450s in HepaRG cells. Mol Pharmacol 2018;94: 749-59.
28. Wang Y, Yan L, Liu J, Chen S, Liu G, Nie Y, et al. The HNF1alpharegulated lncRNA HNF1alpha-AS1 is involved in the regulation of cytochrome P450 expression in human liver tissues and Huh7 cells. J Pharmacol Exp Ther 2019;368:353-62.
29. Lan X, Yan J, Ren J, Zhong B, Li J, Li Y, et al. A novel long noncoding RNA lnc-HC binds hnRNPA2B1 to regulate expressions of Cyp7a1 and Abca1 in hepatocytic cholesterol metabolism. Hepatology 2016;64:58-72.
30. Li P, Ruan X, Yang L, Kiesewetter K, Zhao Y, Luo H, et al. A liverenriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metabol 2015;21:455-67.
31. Fu Y, Wang W, Li X, Liu Y, Niu Y, Zhang B, et al. LncRNA H19 interacts with S-adenosylhomocysteine hydrolase to regulate LINE-1 methylation in human lung-derived cells exposed to benzo[a]pyrene. Chemosphere 2018;207:84-90.
32. Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, et al. Carcinomaassociated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics 2018;8:3932-48.
33. Shima H, Kida K, Adachi S, Yamada A, Sugae S, Narui K, et al. Lnc RNA H19 is associated with poor prognosis in breast cancer patients and promotes cancer stemness. Breast Canc Res Treat 2018;170: 507-16.
34. He JH, Han ZP, Liu JM, Zhou JB, Zou MX, Lv YB, et al. Overexpression of long non-coding RNA MEG3 inhibits proliferation of hepatocellular carcinoma Huh7 cells via negative modulation of miRNA-664. J Cell Biochem 2017;118:3713-21.
35. Liu LC, Wang YL, Lin PL, Zhang X, Cheng WC, Liu SH, et al. Long noncoding RNA HOTAIR promotes invasion of breast cancer cells through chondroitin sulfotransferase CHST15. Int J Cancer 2019;145: 2478-87.
36. Chen L, Manautou JE, Zhong X-b. Impact on acetaminophen-induced hepatotoxicity by long non-coding RNAs HNF1a-AS1 and HNF4aAS1 in HepaRG cells. FASEB J 2019;33:506.6.
37. Zhu B, Xu M, Shi H, Gao X, Liang P. Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.). BMC Genomics 2017;18:380.
38. Li CY, Cui JY. Regulation of protein-coding gene and long noncoding RNA pairs in liver of conventional and germ-free mice following oral PBDE exposure. PLoS One 2018;13:e0201387.
39. Fang Z, Chen W, Yuan Z, Liu X, Jiang H. LncRNA-MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed Pharmacother 2018; 101:536-42.
40. Tirosh I, Izar B, Prakadan SM, Wadsworth 2nd MH, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016;352:189-96.
41. Wang Y, Zhang D, Wu K, Zhao Q, Nie Y, Fan D. Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol 2014;34:3182-93.
42. Takahashi K, Yan IK, Wood J, Haga H, Patel T. Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy. Mol Cancer Res 2014;12:1377-87.
43. Zhu J, Zhang R, Yang D, Li J, Yan X, Jin K, et al. Knockdown of long non-coding RNA XIST inhibited doxorubicin resistance in colorectal cancer by upregulation of miR-124 and downregulation of SGK1. Cell Physiol Biochem 2018;51:113-28.
44. Hu H, Yang L, Li L, Zeng C. Long non-coding RNA KCNQ1OT1 modulates oxaliplatin resistance in hepatocellular carcinoma through miR-7-5p/ABCC1 axis. Biochem Biophys Res Commun 2018;503: 2400-6.
45. Chang L, Hu Z, Zhou Z, Zhang H. Linc00518 contributes to multidrug resistance through regulating the MiR-199a/MRP1 axis in breast cancer. Cell Physiol Biochem 2018;48:16-28.
46. Wu X, Zheng Y, Han B, Dong X. Long noncoding RNA BLACAT1 modulates ABCB1 to promote oxaliplatin resistance of gastric cancer via sponging miR-361. Biomed Pharmacother 2018;99:832-8.
47. Eisses JF, Kaplan JH. Molecular characterization of hCTR1, the human copper uptake protein. J Biol Chem 2002;277:29162-71.
48. Lee J, Pena MM, Nose Y, Thiele DJ. Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 2002;277:4380-7.
49. Ishida S, Lee J, Thiele DJ, Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A 2002;99:14298-302.
50. Jandial DD, Farshchi-Heydari S, Larson CA, Elliott GI, Wrasidlo WJ, Howell SB. Enhanced delivery of cisplatin to intraperitoneal ovarian carcinomas mediated by the effects of bortezomib on the human copper transporter 1. Clin Cancer Res 2009;15:553-60.
51. Kim ES, Tang X, Peterson DR, Kilari D, Chow CW, Fujimoto J, et al. Copper transporter CTR1 expression and tissue platinum concentration in non-small cell lung cancer. Lung Cancer 2014;85:88-93.
52. Jiang P, Wu X, Wang X, Huang W, Feng Q. NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget 2016;7:43337-51.
53. Jiang P, Chen A, Wu X, Zhou M, Ul Haq I, Mariyam Z, et al. NEAT1 acts as an inducer of cancer stem cell-like phenotypes in NSCLC by inhibiting EGCG-upregulated CTR1. J Cell Physiol 2018;233: 4852-63.
54. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell 2013;152:1298-307.
55. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 2015;47:199-208.
56. Esposito R, Bosch N, Lanzos A, Polidori T, Pulido-Quetglas C, Johnson R. Hacking the cancer genome: profiling therapeutically actionable long non-coding RNAs using CRISPR-Cas9 screening. Cancer Cell 2019;35:545-57.
57. Joung J, Engreitz JM, Konermann S, Abudayyeh OO, Verdine VK, Aguet F, et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 2017;548:343-6.
58. Bester AC, Lee JD, Chavez A, Lee YR, Nachmani D, Vora S, et al. An integrated genome-wide CRISPRa approach to functionalize lncRNAs in drug resistance. Cell 2018;173:649-664 e20.
59. Li H, Ning S, Ghandi M, Kryukov GV, Gopal S, Deik A, et al. The landscape of cancer cell line metabolism. Nat Med 2019;25:850-60.
60. Dempsey JL, Cui JY. Regulation of hepatic long noncoding RNAs by pregnane X receptor and constitutive androstane receptor agonists in mouse liver. Drug Metab Dispos 2019;47:329-39.
Similar articles:
1.Chuanzhu Lv, Ling Huang.Xenobiotic receptors in mediating the effect of sepsis on drug metabolism[J]. Acta Pharmaceutica Sinica B, 2020,10(1): 33-41