Original articles
Xiaoyu Fan, Xinxin Ding, Qing-Yu Zhang. Hepatic and intestinal biotransformation gene expression and drug disposition in a dextran sulfate sodium-induced colitis mouse model[J]. Acta Pharmaceutica Sinica B, 2020, 10(1): 123-135

Hepatic and intestinal biotransformation gene expression and drug disposition in a dextran sulfate sodium-induced colitis mouse model
Xiaoyu Fana,b, Xinxin Dinga, Qing-Yu Zhanga,b
a Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA;
b Wadsworth Center, New York State Department of Health, School of Public Health, University at Albany, Albany, NY 12201, USA
Abstract:
We examined the impact of gut inflammation on the expression of cytochrome P450 (P450) and other biotransformation genes in male mice using a dextran sulfate sodium (DSS)-induced colitis model. Several P450 isoforms, including CYP1A, CYP2B, CYP2C, and CYP3A, were downregulated, accompanied by decreases in microsomal metabolism of diclofenac and nifedipine, in the liver and small intestine. The impact of the colitis on in vivo clearance of oral drugs varied for four different drugs tested: a small decrease for nifedipine, a relatively large decrease for lovastatin, but no change for pravastatin, and a large decrease in the absorption of cyclosporine A. To further assess the scope of influence of gut inflammation on gene expression, we performed genome-wide expression analysis using RNA-seq, which showed down-regulation of many CYPs, non-CYP phase-I enzymes, phase-II enzymes and transporters, and up-regulation of many other members of these gene families, in both liver and intestine of adult C57BL/6 mice, by DSS-induced colitis. Overall, our results indicate that gut inflammation suppresses the expression of many P450s and other biotransformation genes in the intestine and liver, and alters the pharmacokinetics for some but not all drugs, potentially affecting therapeutic efficacy or causing adverse effects in a drug-specific fashion.
Key words:    Cytochrome P450    CYP    Colitis    Intestine    Inflammatory bowel disease    Drug metabolism    Pharmacokinetics    Gene expression   
Received: 2019-08-31     Revised: 2019-10-31
DOI: 10.1016/j.apsb.2019.12.002
Funds: We thank Ms. Weizhu Yang for assistance with mouse production. We gratefully acknowledge the use of the Histopathology Core of the Wadsworth Center (Albany, NY, USA). This work was supported in part by the National Institutes of Health (Grants GM082978 and ES006694, USA).
Corresponding author: Qing-Yu Zhang     Email:qyzhang@pharmacy.arizona.edu
Author description:
Service
PDF(KB) Free
Print
0
Authors
Xiaoyu Fan
Xinxin Ding
Qing-Yu Zhang

References:
1. Kaminsky LS, Zhang QY. The small intestine as a xenobioticmetabolizing organ. Drug Metab Dispos 2003;31:1520-5.
2. Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos 2006;34:880-6.
3. Bezirtzoglou EE. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile. Microb Ecol Health Dis 2012;23. Available from: https://doi.org/10.3402/mehd.v23i0.18370.
4. Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 2003;43:149-73.
5. Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharmacol Exp Ther 2006;318:1220-9.
6. Kaminsky LS, Fasco MJ. Small intestinal cytochromes P450. Crit Rev Toxicol 1992;21:407-22.
7. Thelen K, Dressman JB. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol 2009;61:541-58.
8. Xie F, Ding X, Zhang QY. An update on the role of intestinal cytochrome P450 enzymes in drug disposition. Acta Pharma Sin B 2016;6: 374-83.
9. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013;138:103-41.
10. Aitken AE, Richardson TA, Morgan ET. Regulation of drugmetabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol 2006;46:123-49.
11. Morgan E. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther 2009;85:434-8.
12. Slaviero KA, Clarke SJ, Rivory LP. Inflammatory response: an unrecognised source of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy. Lancet Oncol 2003;4: 224-32.
13. Gomez-Lechon MJ, Jover R, Donato MT. Cytochrome P450 and steatosis. Curr Drug Metabol 2009;10:692-9.
14. Kim SK, Novak RF. The role of intracellular signaling in insulinmediated regulation of drug metabolizing enzyme gene and protein expression. Pharmacol Ther 2007;113:88-120.
15. Ko KJ, Auyeung KK. Inflammatory bowel disease: etiology, pathogenesis and current therapy. Curr Pharmaceut Des 2014;20: 1082-96.
16. Bergan T, Bjerke PE, Fausa O. Pharmacokinetics of metronidazole in patients with enteric disease compared to normal volunteers. Chemotherapy 1981;27:233-8.
17. Latteri M, Angeloni G, Silveri NG, Manna R, Gasbarrini G, Navarra P. Pharmacokinetics of cyclosporin microemulsion in patients with inflammatory bowel disease. Clin Pharmacokinet 2001;40:473-83.
18. Ramírez-Alcántara V, Montrose MH. Acute murine colitis reduces colonic 5-aminosalicylic acid metabolism by regulation of N-acetyltransferase-2. Am J Physiol Gastrointest Liver Physiol 2014;306: G1002-10.
19. Sandborn WJ. A critical review of cyclosporine therapy in inflammatory bowel disease. Inflamm Bowel Dis 1995;1:48-63.
20. Solomon L, Mansor S, Mallon P, Donnelly E, Hoper M, Loughrey M, et al. The dextran sulphate sodium (DSS) model of colitis: an overview. Comp Clin Pathol 2010;19:235-9.
21. Chen GY, Shaw MH, Redondo G, Núñez G. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res 2008;68:10060-7.
22. Chaluvadi MR, Nyagode BA, Kinloch RD, Morgan ET. TLR4-dependent and -independent regulation of hepatic cytochrome P450 in mice with chemically induced inflammatory bowel disease. Biochem Pharmacol 2009;77:464-71.
23. Kawauchi S, Nakamura T, Miki I, Inoue J, Hamaguchi T, Tanahashi T, et al. Downregulation of CYP3A and P-glycoprotein in the secondary inflammatory response of mice with dextran sulfate sodium-induced colitis and its contribution to cyclosporine A blood concentrations. J Pharmacol Sci 2014;124:180-91.
24. Kusunoki Y, Ikarashi N, Hayakawa Y, Ishii M, Kon R, Ochiai W, et al. Hepatic early inflammation induces downregulation of hepatic cytochrome P450 expression and metabolic activity in the dextran sulfate sodium-induced murine colitis. Eur J Pharm Biopharm 2014;54: 17-27.
25. Zhang QY, Fang C, Zhang J, Dunbar D, Kaminsky L, Ding X. An intestinal epithelium-specific cytochrome P450 (P450) reductaseknockout mouse model: direct evidence for a role of intestinal P450s in first-pass clearance of oral nifedipine. Drug Metab Dispos 2009;37:651-7.
26. Zhu Y, D’Agostino J, Zhang QY. Role of intestinal cytochrome P450 (P450) in modulating the bioavailability of oral lovastatin: insights from studies on the intestinal epithelium-specific P450 reductase knockout mouse. Drug Metab Dispos 2011;39:939-43.
27. Kung L, Batiuk TD, Palomo-Pinon S, Noujaim J, Helms LM, Halloran PF. Tissue distribution of calcineurin and its sensitivity to inhibition by cyclosporine. Am J Transplant 2001;1:325-33.
28. Fasco MJ, Silkworth J, Dunbar DA, Kaminsky LS. Rat small intestinal cytochromes P450 probed by warfarin metabolism. Mol Pharmacol 1993;43:226-33.
29. Tanino T, Komada A, Ueda K, Bando T, Nojiri Y, Ueda Y, et al. Pharmacokinetics and differential regulation of cytochrome P450 enzymes in type 1 allergic mice. Drug Metab Dispos 2016;44:1950-7.
30. Polanco JC, Scicluna BJ, Hill AF, Götz J. Extracellular vesicles isolated from the brains of rTg4510 mice seed tau protein aggregation in a threshold-dependent manner. J Biol Chem 2016;291:12445-66.
31. Zhu Y, Zhang QY. Role of intestinal cytochrome P450 enzymes in diclofenac-induced toxicity in the small intestine. J Pharmacol Exp Ther 2012;343:362-70.
32. Wang XD, Li JL, Lu Y, Chen X, Huang M, Chowbay B, et al. Rapid and simultaneous determination of nifedipine and dehydronifedipine in human plasma by liquid chromatographyetandem mass spectrometry: application to a clinical herbedrug interaction study. J Chromatogr B 2007;852:534-44.
33. Fang ZG, You BG, Chen YG, Zhang JK, Liu YQ, Zhang XN, et al. Analysis of cyclosporine A and its metabolites in rat urine and feces by liquid chromatographyetandem mass spectrometry. J Chromatogr B 2010;878:1153-62.
34. Zhang QY, Dunbar D, Kaminsky LS. Characterization of mouse small intestinal cytochrome P450 expression. Drug Metab Dispos 2003;31: 1346-51.
35. Viennois E, Chen F, Laroui H, Baker MT, Merlin D. Dextran sodium sulfate inhibits the activities of both polymerase and reverse transcriptase: lithium chloride purification, a rapid and efficient technique to purify RNA. BMC Res Notes 2013;6:360.
36. D’Agostino J, Ding X, Zhang P, Jia K, Fang C, Zhu Y, et al. Potential biological functions of cytochrome P450 reductase-dependent enzymes in small intestine novel link to expression of major histocompatibility complex class II genes. J Biol Chem 2012;287:17777-88.
37. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29: 15-21.
38. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 1999; 27:29-34.
39. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012;16: 284-7.
40. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995;57:289-300.
41. Lichtiger S, Present D. Preliminary report: cyclosporin in treatment of severe active ulcerative colitis. Lancet 1990;336:16-9.
42. Lichtiger S, Present DH, Kornbluth A, Gelernt I, Bauer J, Galler G, et al. Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med 1994;330:1841-5.
43. Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/bcatenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 2002;22:1172-83.
44. Shi G, Abbott KN, Wu W, Salter RD, Keyel PA. Dnase1L3 regulates inflammasome-dependent cytokine secretion. Front Immunol 2017;8:522.
45. Rendic S, Guengerich FP. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem Res Toxicol 2014;28:38-42.
46. Hu N, Huang Y, Gao X, Li S, Yan Z, Wei B, et al. Effects of dextran sulfate sodium induced experimental colitis on cytochrome P450 activities in rat liver, kidney and intestine. Chem Biol Interact 2017;271: 48-58.
47. Alex P, Zachos NC, Nguyen T, Gonzales L, Chen TE, Conklin LS, et al. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis 2009;15: 341-52.
48. Kusunoki Y, Ikarashi N, Matsuda S, Matsukawa Y, Kitaoka S, Kon R, et al. Expression of hepatic cytochrome P450 in a mouse model of ulcerative colitis changes with pathological conditions. J Gastroenterol Hepatol 2015;30:1618-26.
49. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 2005;22:11-23.
50. Duggan D, Chen I, Bayne W, Halpin R, Duncan C, Schwartz M, et al. The physiological disposition of lovastatin. Drug Metab Dispos 1989; 17:166-73.
51. Lodge JW, Fletcher BL, Brown SS, Parham AJ, Fernando RA, Collins BJ. Determination of lovastatin hydroxy acid in female B6C3F1 mouse serum. J Anal Toxicol 2008;32:248-52.
52. Ishigami M, Honda T, Takasaki W, Ikeda T, Komai T, Ito K, et al. A comparison of the effects of 3-hydroxy-3-methylglutaryl-coenzyme a (HMG-CoA) reductase inhibitors on the CYP3A4-dependent oxidation of mexazolam in vitro. Drug Metab Dispos 2001;29:282-8.
53. Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996;60:54-61.
54. Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA. Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med 2016;9:97-106.
55. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J 2011;13:519-47.
56. Kolars JC, Awni WM, Merion RM, Watkins PB. First-pass metabolism of cyclosporin by the gut. Lancet 1991;338:1488-90.
57. Tjia JF, Webber IR, Back DJ. Cyclosporin metabolism by the gastrointestinal mucosa. Br J Clin Pharmacol 1991;31:344-6.
58. Pavlović N, Goloćorbin-Kon S, Ðanić M, Stanimirov B, Al-Salami H, Stankov K, et al. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front Pharmacol 2018; 9:1283.
59. Schiff J, Cole E, Cantarovich M. Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin J Am Soc Nephrol 2007;2: 374-84.
60. Bernstein CN, Nabalamba A. Hospitalization-based major comorbidity of inflammatory bowel disease in Canada. Chin J Gastroenterol Hepatol 2007;21:507-11.
Similar articles:
1.Tomas Smutny, Jan Dusek, Lucie Hyrsova, Jana Nekvindova, Alzbeta Horvatova, Stanislav Micuda, Sabine Gerbal-Chaloin, Petr Pavek.The 3'-untranslated region contributes to the pregnane X receptor (PXR) expression down-regulation by PXR ligands and up-regulation by glucocorticoids[J]. Acta Pharmaceutica Sinica B, 2020,10(1): 136-152
2.Xuan Qin, Xin Wang.Role of vitamin D receptor in the regulation of CYP3A gene expression[J]. Acta Pharmaceutica Sinica B, 2019,9(6): 1087-1098
3.Yuhua Li, Qiang Meng, Mengbi Yang, Dongyang Liu, Xiangyu Hou, Lan Tang, Xin Wang, Yuanfeng Lyu, Xiaoyan Chen, Kexin Liu, Ai-Ming Yu, Zhong Zuo, Huichang Bi.Current trends in drug metabolism and pharmacokinetics[J]. Acta Pharmaceutica Sinica B, 2019,9(6): 1113-1144
4.Zhoupeng Zhang, Wei Tang.Drug metabolism in drug discovery and development[J]. Acta Pharmaceutica Sinica B, 2018,8(5): 721-732
5.Fang Xie, Xinxin Ding, Qing-Yu Zhang.An update on the role of intestinal cytochrome P450 enzymes in drug disposition[J]. Acta Pharmaceutica Sinica B, 2016,6(5): 374-383
6.Siyun Xu, Yongsheng Xiao, Li Li, Lushan Yu, Huidi Jiang, Aiming Yu, Su Zeng.Three new shRNA expression vectors targeting the CYP3A4 coding sequence to inhibit its expression[J]. Acta Pharmaceutica Sinica B, 2014,4(5): 350-357
7.Shuoqi Xu, Zhihua Ren, Yanan Wang, Xinxin Ding, Yongping Jiang.Preferential expression of cytochrome CYP CYP2R1 but not CYP1B1 in human cord blood hematopoietic stem and progenitor cells[J]. Acta Pharmaceutica Sinica B, 2014,4(6): 464-469
8.Phani Krishna Kondamudi, Rajkumar Malayandi, Chandramohan Eaga, Deepika Aggarwal.Drugs as causative agents and therapeutic agents in inflammatory bowel disease[J]. Acta Pharmaceutica Sinica B, 2013,3(5): 289-296