Reviews
Yang Wang, Xueyang Jiang, Feng Feng, Wenyuan Liu, Haopeng Sun. Degradation of proteins by PROTACs and other strategies[J]. Acta Pharmaceutica Sinica B, 2020, 10(2): 207-238

Degradation of proteins by PROTACs and other strategies
Yang Wanga, Xueyang Jiangd, Feng Fengc,d, Wenyuan Liua, Haopeng Sunb
a Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China;
b Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China;
c Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China;
d Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
Abstract:
Abnormal protein expression or activities are associated with many diseases, especially cancer. Therefore, down-regulating the proteins involved in cancer cell survival proved to be an effective strategy for cancer treatmentda number of drugs based on proteolysis-targeting chimaera (PROTAC) mechanism have demonstrated clinical efficacy. Recent progress in the PROTAC strategy includes identification of the structure of the first ternary eutectic complex, extra-terminal domain-4-PROTAC-VonHippel-Lindau (BRD4-PROTAC-VHL), and PROTAC ARV-110 has entered clinical trials for the treatment of prostate cancer in 2019. These discoveries strongly proved the value of the PROTAC strategy. In this review, we summarize recent meaningful research of PROTACs, including the molecular design and optimization strategy as well as clinical application of candidate molecules. We hope to provide useful insights for rational design of PROTACs.
Key words:    Protein degradation    PROTAC    Ubiquitin proteasome system    E3 ubiquitin ligase    Target protein    Heterobifunctional molecule   
Received: 2019-05-20     Revised: 2019-07-19
DOI: 10.1016/j.apsb.2019.08.001
Funds: We gratefully thank the support from grants (Nos. 81573281) of National Natural Science Foundation of China. We also thank the support from Double First-Class initiative Innovation team project of China Pharmaceutical University (Nos. CPU2018GF11 and CPU2018GY34, China).
Corresponding author: Wenyuan Liu, Haopeng Sun     Email:liuwenyuan@163.com;sunhaopeng@163.com
Author description:
Service
PDF(KB) Free
Print
0
Authors
Yang Wang
Xueyang Jiang
Feng Feng
Wenyuan Liu
Haopeng Sun

References:
1. Miklos GL, Maleszka R. Protein functions and biological contexts. Proteomics 2001;1:169-78.
2. Seo MH, Kim PM. The present and the future of motif-mediated protein-protein interactions. Curr Opin Struct Biol 2018;50:162-70.
3. Bastola P, Oien DB, Cooley M, Chien J. Emerging cancer therapeutic targets in protein homeostasis. AAPS J 2018;20:94.
4. Eisele F, Wolf DH. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett 2008;582:4143-6.
5. Setiawan D, Brender J, Zhang Y. Recent advances in automated protein design and its future challenges. Expert Opin Drug Discov 2018;13:587-604.
6. Finkelstein AV, Badretdin AJ, Galzitskaya OV, Ivankov DN, Bogatyreva NS, Garbuzynskiy SO. There and back again:two views on the protein folding puzzle. Phys Life Rev 2017;21:56-71.
7. Roberts CJ. Therapeutic protein aggregation:mechanisms, design, and control. Trends Biotechnol 2014;32:372-80.
8. Komar AA. Unraveling co-translational protein folding:concepts and methods. Methods 2018;137:71-81.
9. Costes S. Targeting protein misfolding to protect pancreatic betacells in type 2 diabetes. Curr Opin Pharmacol 2018;43:104-10.
10. Cheng B, Li Y, Ma L, Wang Z, Petersen RB, Zheng L, et al. Interaction between amyloidogenic proteins and biomembranes in protein misfolding diseases:mechanisms, contributors, and therapy. Biochim Biophys Acta Biomembr 2018;1860:1876-88.
11. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 2009;78:959-91.
12. Comyn SA, Mayor T. A method to monitor protein turnover by flow cytometry and to screen for factors that control degradation by fluorescence-activated cell sorting. In:Mayor T, Kleiger G, editors. The ubiquitin proteasome system:methods and protocols. New York, NY:Humana Press; 2018. p. 137-53.
13. Schneider KL, Nyström T, Widlund PO. Studying spatial protein quality control, proteopathies, and aging using different model misfolding proteins in S. cerevisiae. Front Mol Neurosci 2018;11:249.
14. Lee J, Xu Y, Zhang T, Cui L, Saidi L, Ye Y. Secretion of misfolded cytosolic proteins from mammalian cells is independent of chaperone-mediated autophagy. J Biol Chem 2018;293:14359-70.
15. Bustamante HA, Gonzalez AE, Cerda-Troncoso C, Shaughnessy R, Otth C, Soza A, et al. Interplay between the autophagy-lysosomal pathway and the ubiquitin-proteasome system:a target for therapeutic development in Alzheimer's disease. Front Cell Neurosci 2018;12:126.
16. Ciechanover A, Kwon YT. Degradation of misfolded proteins in neurodegenerative diseases:therapeutic targets and strategies. Exp Mol Med 2015;47:e147.
17. Dissmeyer N, Rivas S, Graciet E. Life and death of proteins after protease cleavage:protein degradation by the N-end rule pathway. New Phytol 2018;218:929-35.
18. Wu SY, Lan SH, Wu SR, Chiu YC, Lin XZ, Su IJ, et al. Hepatocellular carcinoma-related cyclin D1 is selectively regulated by autophagy degradation system. Hepatology 2018;68:141-54.
19. Korolchuk VI, Menzies FM, Rubinsztein DC. Mechanisms of crosstalk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 2010;584:1393-8.
20. Kocaturk NM, Gozuacik D. Crosstalk between mammalian autophagy and the ubiquitin-proteasome system. Front Cell Dev Biol 2018;6:128.
21. Navid F, Layh-Schmitt G, Sikora KA, Cougnoux A, Colbert RA. The role of autophagy in the degradation of misfolded HLA-B27 heavy chains. Arthritis Rheum 2018;70:746-55.
22. Lai AC, Crews CM. Induced protein degradation:an emerging drug discovery paradigm. Nat Rev Drug Discov 2017;16:101-14.
23. Kim H, Ham S, Jo M, Lee GH, Lee YS, Shin JH, et al. CRISPR-Cas9 mediated telomere removal leads to mitochondrial stress and protein aggregation. Int J Mol Sci 2017;18:2093.
24. Karlgren M, Simoff I, Keiser M, Oswald S, Artursson P. CRISPRCas9:a new addition to the drug metabolism and disposition tool box. Drug Metab Dispos 2018;46:1776-86.
25. Lee K, Jang B, Lee YR, Suh EY, Yoo JS, Lee MJ, et al. The cuttingedge technologies of siRNA delivery and their application in clinical trials. Arch Pharm Res 2018;41:867-74.
26. Polier S, Samant RS, Clarke PA, Workman P, Prodromou C, Pearl LH. ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system. Nat Chem Biol 2013;9:307-12.
27. Neckers L, Workman P. Hsp90 molecular chaperone inhibitors:are we there yet? Clin Cancer Res 2012;18:64-76.
28. Deshaies RJ. Protein degradation:prime time for PROTACs. Nat Chem Biol 2015;11:634-5.
29. Gu S, Cui D, Chen X, Xiong X, Zhao Y. PROTACs:an emerging targeting technique for protein degradation in drug discovery. Bioessays 2018;40:1700247.
30. Zou Y, Ma D, Wang Y. The PROTAC technology in drug development. Cell Biochem Funct 2019;37:21-30.
31. Itoh Y. Chemical protein degradation approach and its application to epigenetic targets. Chem Rec 2018;18:1681-700.
32. Paiva SL, Crews CM. Targeted protein degradation:elements of PROTAC design. Curr Opin Chem Biol 2019;50:111-9.
33. Toure M, Crews CM. Small-molecule PROTACS:new approaches to protein degradation. Angew Chem Int Ed Engl 2016;55:1966-73.
34. Lu M, Liu T, Jiao Q, Ji J, Tao M, Liu Y, et al. Discovery of a keap1-dependent peptide PROTAC to knockdown tau by ubiquitination-proteasome degradation pathway. Eur J Med Chem 2018;146:251-9.
35. Chu TT, Gao N, Li QQ, Chen PG, Yang XF, Chen YX, et al. Specific knockdown of endogenous Tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem Biol 2016;23:453-61.
36. Qin C, Hu Y, Zhou B, Fernandez-Salas E, Yang CY, Liu L, et al. Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting chimera (PROTAC) degrader of the bromodomain and extra-terminal (BET) proteins capable of inducing complete and durable tumor regression. J Med Chem 2018;61:6685-704.
37. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, DhePaganon S, et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 2015;348:1376-81.
38. Neklesa TK, Crews CM. Chemical biology:greasy tags for protein removal. Nature 2012;487:308-9.
39. Collins I, Wang H, Caldwell JJ, Chopra R. Chemical approaches to targeted protein degradation through modulation of the ubiquitin-proteasome pathway. Biochem J 2017;474:1127-47.
40. Tae HS, Sundberg TB, Neklesa TK, Noblin DJ, Gustafson JL, Roth AG, et al. Identification of hydrophobic tags for the degradation of stabilized proteins. Chembiochem 2012;13:538-41.
41. Thirunavukarasu D, Shi H. Aptamer-enabled manipulation of the Hsp70 chaperone system suggests a novel strategy for targeted ubiquitination. Nucleic Acid Ther 2016;26:20-8.
42. Yu A, Li P, Tang T, Wang J, Chen Y, Liu L. Roles of Hsp70s in stress responses of microorganisms, plants, and animals. BioMed Res Int 2015;2015:510319.
43. Kampinga HH, Craig EA. The Hsp70 chaperone machinery:J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 2010; 11:579-92.
44. Shiber A, Breuer W, Brandeis M, Ravid T. Ubiquitin conjugation triggers misfolded protein sequestration into quality control foci when Hsp70 chaperone levels are limiting. Mol Biol Cell 2013;24:2076-87.
45. Xie T, Lim SM, Westover KD, Dodge ME, Ercan D, Ficarro SB, et al. Pharmacological targeting of the pseudokinase Her3. Nat Chem Biol 2014;10:1006-12.
46. Lim SM, Xie T, Westover KD, Ficarro SB, Tae HS, Gurbani D, et al. Development of small molecules targeting the pseudokinase Her3. Bioorg Med Chem Lett 2015;25:3382-9.
47. McDonnell DP, Wardell SE, Norris JD. Oral selective estrogen receptor downregulators (SERDs), a breakthrough endocrine therapy for breast cancer. J Med Chem 2015;58:4883-7.
48. Lebraud H, Heightman TD. Protein degradation:a validated therapeutic strategy with exciting prospects. Essays Biochem 2017;61:517-27.
49. Wu YL, Yang X, Ren Z, McDonnell DP, Norris JD, Willson TM, et al. Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol Cell 2005;18:413-24.
50. Teutsch G, Goubet F, Battmann T, Bonfils A, Bouchoux F, Cerede E, et al. Non-steroidal antiandrogens:synthesis and biological profile of high-affinity ligands for the androgen receptor. J Steroid Biochem Mol Biol 1994;48:111-9.
51. Gustafson JL, Neklesa TK, Cox CS, Roth AG, Buckley DL, Tae HS, et al. Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging. Angew Chem Int Ed Engl 2015;54:9659-62.
52. Kim HR, Kang HS, Kim HD. Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells. IUBMB Life 1999;48:429-33.
53. McDonough H, Patterson C. CHIP:a link between the chaperone and proteasome systems. Cell Stress Chaperones 2003;8:303-8.
54. Long MJ, Gollapalli DR, Hedstrom L. Inhibitor mediated protein degradation. Chem Biol 2012;19:629-37.
55. Pickering AM, Davies KJ. Degradation of damaged proteins:the main function of the 20S proteasome. Prog Mol Biol Transl Sci 2012; 109:227-48.
56. Jung T, Höhn A, Grune T. The proteasome and the degradation of oxidized proteins:part II-protein oxidation and proteasomal degradation. Redox Biol 2014;2:99-104.
57. Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochimie 2001;83:301-10.
58. Demasi M, Da Cunha FM. The physiological role of the free 20S proteasome in protein degradation:a critical review. Biochim Biophys Acta Gen Subj 2018;1862:2948-54.
59. Medicherla B, Goldberg AL. Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins. J Cell Biol 2008;182:663-73.
60. Whittier JE, Xiong Y, Rechsteiner MC, Squier TC. Hsp90 enhances degradation of oxidized calmodulin by the 20S proteasome. J Biol Chem 2004;279:46135-42.
61. Shi Y, Long MJ, Rosenberg MM, Li S, Kobjack A, Lessans P, et al. Boc3Arg-linked ligands induce degradation by localizing target proteins to the 20S proteasome. ACS Chem Biol 2016;11:3328-37.
62. Coffey RT, Shi Y, Long MJ, Marr II MT, Hedstrom L. Ubiquilinmediated small molecule inhibition of mammalian target of rapamycin complex 1(mTORC1) signaling. J Biol Chem 2016;291:5221-33.
63. Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science 2006; 312:217-24.
64. Terpe K. Overview of tag protein fusions:from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2003;60:523-33.
65. Waugh DS. Making the most of affinity tags. Trends Biotechnol 2005;23:316-20.
66. England CG, Luo H, Cai W. HaloTag technology:a versatile platform for biomedical applications. Bioconjug Chem 2015;26:975-86.
67. Buckley DL, Raina K, Darricarrere N, Hines J, Gustafson JL, Smith IE, et al. HaloPROTACS:use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem Biol 2015; 10:1831-7.
68. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, et al. HaloTag:a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 2008;3:373-82.
69. Tomoshige S, Naito M, Hashimoto Y, Ishikawa M. Degradation of HaloTag-fused nuclear proteins using bestatin-halotag ligand hybrid molecules. Org Biomol Chem 2015;13:9746-50.
70. Neklesa TK, Tae HS, Schneekloth AR, Stulberg MJ, Corson TW, Sundberg TB, et al. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat Chem Biol 2011;7:538-43.
71. Neklesa TK, Noblin DJ, Kuzin AP, Lew S, Seetharaman J, Acton TB, et al. A bidirectional system for the dynamic small molecule control of intracellular fusion proteins. ACS Chem Biol 2013;8:2293-300.
72. Tomoshige S, Hashimoto Y, Ishikawa M. Efficient protein knockdown of halotag-fused proteins using hybrid molecules consisting of IAP antagonist and HaloTag ligand. Bioorg Med Chem 2016;24:3144-8.
73. Bondeson DP, Crews CM. Targeted protein degradation by small molecules. Annu Rev Pharmacol Toxicol 2017;57:107-23.
74. Schwartz AL, Ciechanover A. Targeting proteins for destruction by the ubiquitin system:implications for human pathobiology. Annu Rev Pharmacol Toxicol 2009;49:73-96.
75. Mofers A, Pellegrini P, Linder S, D'Arcy P. Proteasome-associated deubiquitinases and cancer. Cancer Metastasis Rev 2017;36:635-53.
76. Warang P, Homma T, Pandya R, Sawant A, Shinde N, Pandey D, et al. Potential involvement of ubiquitin-proteasome system dysfunction associated with oxidative stress in the pathogenesis of sickle cell disease. Br J Haematol 2018;182:559-66.
77. Bulatov E, Zagidullin A, Valiullina A, Sayarova R, Rizvanov A. Small molecule modulators of RING-type E3 ligases:MDM and cullin families as targets. Front Pharmacol 2018;9:450.
78. Poirson J, Biquand E, Straub ML, Cassonnet P, Nominé Y, Jones L, et al. Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitin-proteasome system. FEBS J 2017;284:3171-201.
79. Randow F, Lehner PJ. Viral avoidance and exploitation of the ubiquitin system. Nat Cell Biol 2009;11:527-34.
80. Lip PZ, Demasi M, Bonatto D. The role of the ubiquitin proteasome system in the memory process. Neurochem Int 2017;102:57-65.
81. Xi M, Chen Y, Yang H, Xu H, Du K, Wu C, et al. Small molecule protacs in targeted therapy:an emerging strategy to induce protein degradation. Eur J Med Chem 2019;174:159-80.
82. Carmony KC, Kim KB. PROTAC-induced proteolytic targeting. In:Dohmen RJ, Scheffner M, editors. Ubiquitin family modifiers and the proteasome:reviews and protocols. New York:Humana Press; 2012. p. 627-38.
83. Neklesa TK, Winkler JD, Crews CM. Targeted protein degradation by PROTACs. Pharmacol Ther 2017;174:138-44.
84. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs:chimeric molecules that target proteins to the Skp1-cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A 2001;98:8554-9.
85. Sakamoto KM, Kim KB, Verma R, Ransick A, Stein B, Crews CM, et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol Cell Proteom 2003;2:1350-8.
86. Ottis P, Toure M, Cromm PM, Ko E, Gustafson JL, Crews CM. Assessing different E3 ligases for small molecule induced protein ubiquitination and degradation. ACS Chem Biol 2017;12:2570-8.
87. Raina K, Crews CM. Targeted protein knockdown using small molecule degraders. Curr Opin Chem Biol 2017;39:46-53.
88. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 2004;24:10941-53.
89. Furukawa M, Xiong Y. BTB protein keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 2005;25:162-71.
90. Darbandi M, Darbandi S, Agarwal A, Baskaran S, Sengupta P, Dutta S, et al. Oxidative stress-induced alterations in seminal plasma antioxidants:is there any association with keap1 gene methylation in human spermatozoa? Andrologia 2019;51:e13159.
91. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 2016;7:11624.
92. Jiang ZY, Lu MC, You QD. Nuclear factor erythroid 2-related factor 2(Nrf2) inhibition:an emerging strategy in cancer therapy. J Med Chem 2019;62:3840-56.
93. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, et al. Oxidative stress sensor keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 2004;24:7130-9.
94. Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a keap1-independent manner. Mol Cell Biol 2011;31:1121-33.
95. Wu T, Zhao F, Gao B, Tan C, Yagishita N, Nakajima T, et al. Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev 2014;28:708-22.
96. Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase:oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 2004;24:8477-86.
97. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997;236:313-22.
98. Joshi G, Johnson JA. The Nrf2-ARE pathway:a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat CNS Drug Discov 2012;7:218-29.
99. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One 2008;3:e1487.
100. Buckley DL, Crews CM. Small-molecule control of intracellular protein levels through modulation of the ubiquitin proteasome system. Angew Chem Int Ed Engl 2014;53:2312-30.
101. Saadatzadeh MR, Elmi AN, Pandya PH, Bijangi-Vishehsaraei K, Ding J, Stamatkin CW, et al. The role of MDM2 in promoting genome stability versus instability. Int J Mol Sci 2017;18:2216.
102. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor P53. Nature 1993;362:857-60.
103. Cao D, Ng TK, Yip YW, Young AL, Pang CP, Chu WK, et al. P53 inhibition by MDM2 in human pterygium. Exp Eye Res 2018;175:142-7.
104. Levav-Cohen Y, Goldberg Z, Tan KH, Alsheich-Bartok O, Zuckerman V, Haupt S, et al. The P53-MDM2 loop:a critical juncture of stress response. In:Deb SP, Deb S, editors. Mutant P53 and MDM2 in cancer. Dordrecht:Springer; 2014. p. 161-6.
105. De Stephanis L, Mangolini A, Servello M, Harris PC, Dell'Atti L, Pinton P, et al. MicroRNA501-5p induces P53 proteasome degradation through the activation of the mTOR/MDM2 Pathway in ADPKD Cells. J Cell Physiol 2018;233:6911-24.
106. Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor P53. FEBS Lett 1997;420:25-7.
107. Pei D, Zhang Y, Zheng J. Regulation of P53:a collaboration between Mdm2 and MdmX. Oncotarget 2012;3:228-35.
108. Qian Y, Chen X. Senescence regulation by the P53 protein family. In:Galluzzi L, Vitale I, Kepp O, Kroemer G, editors. Cell senescence:methods and protocols. Totowa:Humana Press; 2013. p. 37-61.
109. Soares J, Pereira NA, Monteiro Â, Leão M, Bessa C, Dos Santos DJ, et al. Oxazoloisoindolinones with in vitro antitumor activity selectively activate a P53-pathway through potential inhibition of the P53-MDM2 interaction. Eur J Pharm Sci 2015;66:138-47.
110. Azer SA. MDM2-P53 interactions in human hepatocellular carcinoma:what is the role of nutlins and new therapeutic options? J Clin Med 2018;7:64.
111. Kamal A, Mohammed AA, Shaik TB. P53eMdm2 inhibitors:patent review (20092010). Expert Opin Ther Pat 2012;22:95-105.
112. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the P53 pathway by small-molecule antagonists of MDM2. Science 2004;303:844-8.
113. Endo S, Yamato K, Hirai S, Moriwaki T, Fukuda K, Suzuki H, et al. Potent in vitro and in vivo antitumor effects of MDM2 inhibitor nutlin-3 in gastric cancer cells. Cancer Sci 2011;102:605-13.
114. Pechackova S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget 2016;7:14458-75.
115. Schneekloth AR, Pucheault M, Tae HS, Crews CM. Targeted intracellular protein degradation induced by a small molecule:en route to chemical proteomics. Bioorg Med Chem Lett 2008;18:5904-8.
116. Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, Jiang N, et al. Discovery of RG7112:a small-molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett 2013;4:466-9.
117. Ding Q, Zhang Z, Liu JJ, Jiang N, Zhang J, Ross TM, et al. Discovery of RG7388, a Potent and Selective P53-MDM2 inhibitor in clinical development. J Med Chem 2013;56:5979-83.
118. Amé JC, Spenlehauer C, De Murcia G. The PARP superfamily. Bioessays 2004;26:882-93.
119. Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F. Poly(ADP-ribose) polymerases in double-strand break repair:focus on PARP1, PARP2 and PARP3. Exp Cell Res 2014;329:18-25.
120. Jagtap P, Szabó C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 2005;4:421-40.
121. Zhao Q, Lan T, Su S, Rao Y. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chem Commun (Camb) 2019;55:369-72.
122. Hines J, Lartigue S, Dong H, Qian Y, Crews CM. MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of P53. Cancer Res 2019;79:251-62.
123. Sato S, Tetsuhashi M, Sekine K, Miyachi H, Naito M, Hashimoto Y, et al. Degradation-promoters of cellular inhibitor of apoptosis protein 1 based on bestatin and actinonin. Bioorg Med Chem 2008;16:4685-98.
124. Dubrez L, Rajalingam K. IAPs and cell migration. Semin Cell Dev Biol 2015;39:124-31.
125. Berthelet J, Dubrez L. Regulation of apoptosis by inhibitors of apoptosis (IAPs). Cells 2013;2:163-87.
126. Vaux DL, Silke J. IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 2005;6:287-97.
127. Dueber EC, Schoeffler AJ, Lingel A, Elliott JM, Fedorova AV, Giannetti AM, et al. Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science 2011;334:376-80.
128. Gyrd-Hansen M, Meier P. IAPs:From caspase inhibitors to modulators of NF-kB, inflammation and cancer. Nat Rev Cancer 2010;10:561-74.
129. Che X, Yang D, Zong H, Wang J, Li X, Chen F, et al. Nuclear cIAP1 overexpression is a tumor stage- and grade-independent predictor of poor prognosis in human bladder cancer patients. Urol Oncol 2012; 30:450-6.
130. Talmadge JE, Lenz BF, Pennington R, Long C, Phillips H, Schneider M, et al. Immunomodulatory and therapeutic properties of bestatin in mice. Cancer Res 1986;46:4505-10.
131. Sekine K, Takubo K, Kikuchi R, Nishimoto M, Kitagawa M, Abe F, et al. Small molecules destabilize cIAP1 by activating auto-ubiquitylation. J Biol Chem 2008;283:8961-8.
132. Sato S, Aoyama H, Miyachi H, Naito M, Hashimoto Y. Demonstration of direct binding of cIAP1 degradation-promoting bestatin analogs to BIR3 domain:synthesis and application of fluorescent bestatin ester analogs. Bioorg Med Chem Lett 2008;18:3354-8.
133. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kB activation, and TNFa-dependent apoptosis. Cell 2007;131:669-81.
134. Cohen P, Tcherpakov M. Will the ubiquitin system furnish as many drug targets as protein kinases?. Cell 2010;143:686-93.
135. Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 2012;11:109-24.
136. Ohoka N, Okuhira K, Ito M, Nagai K, Shibata N, Hattori T, et al. In vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs). J Biol Chem 2017;292:4556-70.
137. Itoh Y, Ishikawa M, Naito M, Hashimoto Y. Protein knockdown using methyl bestatin-ligand hybrid molecules:design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J Am Chem Soc 2010;132:5820-6.
138. Itoh Y, Ishikawa M, Kitaguchi R, Sato S, Naito M, Hashimoto Y. Development of target protein-selective degradation inducer for protein knockdown. Bioorg Med Chem 2011;19:3229-41.
139. Itoh Y, Ishikawa M, Kitaguchi R, Okuhira K, Naito M, Hashimoto Y. Double protein knockdown of cIAP1 and CRABP-II using a hybrid molecule consisting of ATRA and IAPs Antagonist. Bioorg Med Chem Lett 2012;22:4453-7.
140. Okuhira K, Demizu Y, Hattori T, Ohoka N, Shibata N, NishimakiMogami T, et al. Development of hybrid small molecules that induce degradation of estrogen receptor-alpha and necrotic cell death in breast cancer cells. Cancer Sci 2013;104:1492-8.
141. Ohoka N, Morita Y, Nagai K, Shimokawa K, Ujikawa O, Fujimori I, et al. Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor a degradation. J Biol Chem 2018;293:6776-90.
142. Hood FE, Royle SJ. Pulling it together:the mitotic function of TACC3. BioArchitecture 2011;1:105-9.
143. Jacquemier J, Ginestier C, Rougemont J, Bardou VJ, CharafeJauffret E, Geneix J, et al. Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res 2005; 65:767-79.
144. Lauffart B, Vaughan MM, Eddy R, Chervinsky D, DiCioccio RA, Black JD, et al. Aberrations of TACC1 and TACC3 are associated with ovarian cancer. BMC Women's Health 2005;5:8.
145. Ohoka N, Nagai K, Hattori T, Okuhira K, Shibata N, Cho N, et al. Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis 2014;5:e1513.
146. Shimokawa K, Shibata N, Sameshima T, Miyamoto N, Ujikawa O, Nara H, et al. Targeting the allosteric site of oncoprotein BCR-ABL as an alternative strategy for effective target protein degradation. ACS Med Chem Lett 2017;8:1042-7.
147. Shibata N, Nagai K, Morita Y, Ujikawa O, Ohoka N, Hattori T, et al. Development of protein degradation inducers of androgen receptor by conjugation of androgen receptor ligands and inhibitor of apoptosis protein ligands. J Med Chem 2018;61:543-75.
148. Hao J, Chen X, Fu T, Liu J, Yu M, Han W, et al. The expression of VHL (Von Hippel-Lindau) after traumatic spinal cord injury and its role in neuronal apoptosis. Neurochem Res 2016;41:2391-400.
149. Wang S, Xia W, Qiu M, Wang X, Jiang F, Yin R, et al. Atlas on substrate recognition subunits of CRL2 E3 ligases. Oncotarget 2016; 7:46707-16.
150. Min JH, Yang H, Ivan M, Gertler F, Kaelin Jr WG, Pavletich NP. Structure of an HIF-1a-pVHL complex:hydroxyproline recognition in signaling. Science 2002;296:1886-9.
151. Yang Z, Yang Z, Xiong L, Huang S, Liu J, Yang L, et al. Expression of VHL and HIF-1a and their clinicopathologic significance in benign and malignant lesions of the gallbladder. Appl Immunohistochem Mol Morphol 2011;19:534-9.
152. Semenza GL. Hypoxia-inducible factor 1:oxygen homeostasis and disease pathophysiology. Trends Mol Med 2001;7:345-50.
153. Kaelin Jr WG. The von HippeleLindau Tumour suppressor protein:O2 sensing and cancer. Nat Rev Cancer 2008;8:865-73.
154. Cardote TA, Gadd MS, Ciulli A. Crystal structure of the Cul2-Rbx1-EloBC-VHL ubiquitin ligase complex. Structure 2017;25:901-11. e3.
155. Van Molle I, Thomann A, Buckley DL, So EC, Lang S, Crews CM, et al. Dissecting fragment-based lead discovery at the von HippelLindau protein:hypoxia inducible factor 1a protein-protein interface. Chem Biol 2012;19:1300-12.
156. Testa A, Lucas X, Castro GV, Chan KH, Wright JE, Runcie AC, et al. 3-Fluoro-4-hydroxyprolines:synthesis, conformational analysis, and stereoselective recognition by the VHL E3 ubiquitin ligase for targeted protein degradation. J Am Chem Soc 2018;140:9299-313.
157. Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J, Noblin DJ, et al. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1a interaction. J Am Chem Soc 2012;134:4465-8.
158. Buckley DL, Gustafson JL, Van Molle I, Roth AG, Tae HS, Gareiss PC, et al. Small-molecule inhibitors of the interaction between the E3 ligase VHL and Hif1a. Angew Chem Int Ed Engl 2012; 51:11463-7.
159. Dias DM, Van Molle I, Baud MG, Galdeano C, Geraldes CF, Ciulli A. Is NMR fragment screening fine-tuned to assess druggability of protein-protein interactions?. ACS Med Chem Lett 2014;5:23-8.
160. Galdeano C, Gadd MS, Soares P, Scaffidi S, Van Molle I, Birced I, et al. Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von HippelLindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J Med Chem 2014;57:8657-63.
161. Frost J, Galdeano C, Soares P, Gadd MS, Grzes KM, Ellis L, et al. Potent and selective chemical probe of hypoxic signalling downstream of HIF-a hydroxylation via VHL inhibition. Nat Commun 2016;7:13312.
162. Soares P, Gadd MS, Frost J, Galdeano C, Ellis L, Epemolu O, et al. Group-based optimization of potent and cell-active inhibitors of the von Hippel-Lindau (VHL) E3 ubiquitin ligase:structure-activity relationships leading to the chemical probe (2S,4R)-1-((S)-2-(1-cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxyN-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298). J Med Chem 2018;61:599-618.
163. Bondeson DP, Mares A, Smith IE, Ko E, Campos S, Miah AH, et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol 2015;11:611-7.
164. Gallenkamp D, Gelato KA, Haendler B, Weinmann H. Bromodomains and their pharmacological inhibitors. ChemMedChem 2014;9:438-64.
165. Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AM, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A 2016; 113:7124-9.
166. Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 2012;12:465-77.
167. Zengerle M, Chan KH, Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem Biol 2015;10:1770-7.
168. Gadd MS, Testa A, Lucas X, Chan KH, Chen W, Lamont DJ, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol 2017;13:514-21.
169. Zoppi V, Hughes SJ, Maniaci C, Testa A, Gmaschitz T, Wieshofer C, et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J Med Chem 2019;62:699-726.
170. Lai AC, Toure M, Hellerschmied D, Salami J, Jaime-Figueroa S, Ko E, et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew Chem Int Ed Engl 2016;55:807-10.
171. Yu T, Yang Y, Yin DQ, Hong S, Son YJ, Kim JH, et al. TBK1 inhibitors:a review of patent literature (2011-2014). Expert Opin Ther Pat 2015;25:1385-96.
172. Clark K, Plater L, Peggie M, Cohen P. Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkB kinase epsilon:a distinct upstream kinase mediates Ser-172 phosphorylation and activation. J Biol Chem 2009;284:14136-46.
173. Crew AP, Raina K, Dong H, Qian Y, Wang J, Vigil D, et al. Identification and characterization of von Hippel-Lindau-recruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1. J Med Chem 2018;61:583-98.
174. Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP, et al. The advantages of targeted protein degradation over inhibition:an RTK case study. Cell Chem Biol 2018;25:67-77. e3.
175. Burslem GM, Song J, Chen X, Hines J, Crews CM. Enhancing antiproliferative activity and selectivity of a FLT-3 inhibitor by proteolysis targeting chimera conversion. J Am Chem Soc 2018;140:16428-32.
176. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 2009;114:2984-92.
177. Le Douarin B, Zechel C, Garnier JM, Lutz Y, Tora L, Pierrat P, et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J 1995;14:2020-33.
178. Gechijian LN, Buckley DL, Lawlor MA, Reyes JM, Paulk J, Ott CJ, et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat Chem Biol 2018;14:405-12.
179. Kang CH, Lee DH, Lee CO, Du Ha J, Park CH, Hwang JY. Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC). Biochem Biophys Res Commun 2018;505:542-7.
180. Lee BY, Timpson P, Horvath LG, Daly RJ. FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 2015;146:132-49.
181. Béraud C, Dormoy V, Danilin S, Lindner V, Béthry A, Hochane M, et al. Targeting FAK scaffold functions inhibits human renal cell carcinoma growth. Int J Cancer 2015;137:1549-59.
182. Cromm PM, Samarasinghe KT, Hines J, Crews CM. Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J Am Chem Soc 2018;140:17019-26.
183. Han X, Wang C, Qin C, Xiang W, Fernandez-Salas E, Yang CY, et al. Discovery of ARD-69 as a highly potent proteolysis targeting chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer. J Med Chem 2019;62:941-64.
184. Smith BE, Wang SL, Jaime-Figueroa S, Harbin A, Wang J, Hamman BD, et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun 2019;10:131.
185. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499-511.
186. Chiang EY, Yu X, Grogan JL. Immune complex-mediated cell activation from systemic lupus erythematosus and rheumatoid arthritis patients elaborate different requirements for IRAK1/4 kinase activity across human cell types. J Immunol 2011;186:1279-88.
187. Nunes J, McGonagle GA, Eden J, Kiritharan G, Touzet M, Lewell X, et al. Targeting IRAK4 for degradation with PROTACs. ACS Med Chem Lett 2019;10:1081-5.
188. Ribeiro-Silva C, Vermeulen W, Lans H. SWI/SNF:complex complexes in genome stability and cancer. DNA Repair (Amst) 2019;77:87-95.
189. Hodges C, Kirkland JG, Crabtree GR. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb Perspect Med 2016;6:a026930.
190. Farnaby W, Koegl M, Roy MJ, Whitworth C, Diers E, Trainor N, et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat Chem Biol 2019;15:672-80.
191. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, et al. Identification of a primary target of thalidomide teratogenicity. Science 2010;327:1345-50.
192. Fischer ES, Böhm K, Lydeard JR, Yang H, Stadler MB, Cavadini S, et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 2014;512:49-53.
193. Lopez-Girona A, Mendy D, Ito T, Miller K, Gandhi AK, Kang J, et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 2012;26:2326-35.
194. Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 2014;343:301-5.
195. Petzold G, Fischer ES, Thoma NH. Structural basis of lenalidomideinduced CK1a degradation by the CRL4CRBN ubiquitin ligase. Nature 2016;532:127-30.
196. Lohbeck J, Miller AK. Practical synthesis of a phthalimide-based cereblon ligand to enable PROTAC development. Bioorg Med Chem Lett 2016;26:5260-2.
197. Hansen JD, Condroski K, Correa M, Muller G, Man HW, Ruchelman A, et al. Protein degradation via CRL4CRBN ubiquitin ligase:discovery and structure-activity relationships of novel glutarimide analogs that promote degradation of Aiolos and/or GSPT1. J Med Chem 2018;61:492-503.
198. Matyskiela ME, Zhang W, Man HW, Muller G, Khambatta G, Baculi F, et al. A cereblon modulator (CC-220) with improved degradation of ikaros and aiolos. J Med Chem 2018;61:535-42.
199. Matyskiela ME, Lu G, Ito T, Pagarigan B, Lu CC, Miller K, et al. A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. Nature 2016;535:252-7.
200. Lu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol 2015;22:755-63.
201. Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013;153:320-34.
202. Coleman DJ, Gao L, Schwartzman J, Korkola JE, Sampson D, Derrick DS, et al. Maintenance of MYC expression promotes de novo resistance to BET bromodomain inhibition in castration-resistant prostate cancer. Sci Rep 2019;9:3823.
203. Shi W, Zhang C, Ning Z, Hua Y, Li Y, Chen L, et al. Long noncoding RNA LINC00346 promotes pancreatic cancer growth and gemcitabine resistance by sponging miR-188-3P to derepress BRD4 expression. J Exp Clin Cancer Res 2019;38:60.
204. Wurz RP, Dellamaggiore K, Dou H, Javier N, Lo MC, McCarter JD, et al. A "click chemistry platform" for the rapid synthesis of bispecific molecules for inducing protein degradation. J Med Chem 2018; 61:453-61.
205. Remillard D, Buckley DL, Paulk J, Brien GL, Sonnett M, Seo HS, et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew Chem Int Ed Engl 2017;56:5738-43.
206. Yeh YY, Chen R, Hessler J, Mahoney E, Lehman AM, Heerema NA, et al. Up-regulation of CDK9 kinase activity and Mcl-1 stability contributes to the acquired resistance to cyclin-dependent kinase inhibitors in leukemia. Oncotarget 2015;6:2667-79.
207. Boffo S, Damato A, Alfano L, Giordano A. CDK9 inhibitors in acute myeloid leukemia. J Exp Clin Cancer Res 2018;37:36.
208. Robb CM, Contreras JI, Kour S, Taylor MA, Abid M, Sonawane YA, et al. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem Commun (Camb) 2017;53:7577-80.
209. Bian J, Ren J, Li Y, Wang J, Xu X, Feng Y, et al. Discovery of Wogonin-based PROTACs against Cdk9 and capable of achieving antitumor activity. Bioorg Chem 2018;81:373-81.
210. Olson CM, Jiang B, Erb MA, Liang Y, Doctor ZM, Zhang Z, et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol 2018;14:163-70.
211. O'Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 2016;13:417-30.
212. Brand M, Jiang B, Bauer S, Donovan KA, Liang Y, Wang ES, et al. Homolog-selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chem Biol 2019;26:300-306.e9.
213. Jiang B, Wang ES, Donovan KA, Liang Y, Fischer ES, Zhang T, et al. Development of dual and selective degraders of cyclin-dependent kinases 4 and 6. Angew Chem Int Ed Engl 2019;58:6321-6.
214. Schiedel M, Herp D, Hammelmann S, Swyter S, Lehotzky A, Robaa D, et al. Chemically induced degradation of Sirtuin 2(Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals). J Med Chem 2018;61:482-91.
215. Zhou B, Hu J, Xu F, Chen Z, Bai L, Fernandez-Salas E, et al. Discovery of a small-molecule degrader of bromodomain and extraterminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. J Med Chem 2018;61:462-81.
216. Bai L, Zhou B, Yang CY, Ji J, McEachern D, Przybranowski S, et al. Targeted degradation of BET proteins in triple-negative breast cancer. Cancer Res 2017;77:2476-87.
217. Huang HT, Dobrovolsky D, Paulk J, Yang G, Weisberg EL, Doctor ZM, et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem Biol 2018;25:88-99.e6.
218. Buhimschi AD, Armstrong HA, Toure M, Jaime-Figueroa S, Chen TL, Lehman AM, et al. Targeting the C481S ibrutinibresistance mutation in Bruton's tyrosine kinase using PROTACmediated degradation. Biochemistry 2018;57:3564-75.
219. Zorba A, Nguyen C, Xu Y, Starr J, Borzilleri K, Smith J, et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci U S A 2018;115. E7285-92.
220. Holla VR, Elamin YY, Bailey AM, Johnson AM, Litzenburger BC, Khotskaya YB, et al. ALK:a tyrosine kinase target for cancer therapy. Cold Spring Harb Mol Case Stud 2017;3. a001115.
221. Zhang C, Han XR, Yang X, Jiang B, Liu J, Xiong Y, et al. Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK). Eur J Med Chem 2018;151:304-14.
222. Nagy Z, Tora L. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 2007;26:5341-57.
223. De Jong RC, Ewing MM, De Vries MR, Karper JC, Bastiaansen AJ, Peters HA, et al. The epigenetic factor PCAF regulates vascular inflammation and is essential for intimal hyperplasia development. PLoS One 2017;12. e0185820.
224. Bassi ZI, Fillmore MC, Miah AH, Chapman TD, Maller C, Roberts EJ, et al. Modulating PCAF/GCN5 immune cell function through a PROTAC approach. ACS Chem Biol 2018;13:2862-7.
225. Chen H, Chen F, Liu N, Wang X, Gou S. Chemically induced degradation of CK2 by proteolysis targeting chimeras based on a ubiquitin-proteasome pathway. Bioorg Chem 2018;81:536-44.
226. McCoull W, Cheung T, Anderson E, Barton P, Burgess J, Byth K, et al. Development of a novel B-cell lymphoma 6(BCL6) PROTAC to provide insight into small molecule targeting of BCL6. ACS Chem Biol 2018;13:3131-41.
227. Li Y, Yang J, Aguilar A, McEachern D, Przybranowski S, Liu L, et al. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J Med Chem 2019;62:448-66.
228. Krajcovicova S, Jorda R, Hendrychova D, Krystof V, Soural M. Solid-phase synthesis for thalidomide-based proteolysis-targeting chimeras (PROTAC). Chem Commun (Camb) 2019;55:929-32.
229. Sun Y, Ding N, Song Y, Yang Z, Liu W, Zhu J, et al. Degradation of Bruton's tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-hodgkin lymphomas. Leukemia 2019;33:2105-10.
230. Wu H, Yang K, Zhang Z, Leisten ED, Li Z, Xie H, et al. Development of multifunctional histone deacetylase 6 degraders with potent antimyeloma activity. J Med Chem 2019;62:7042-57.
231. Neklesa T, Snyder LB, Willard RR, Vitale N, Raina K, Pizzano J, et al. Abstract 5236:ARV-110:an androgen receptor PROTAC degrader for prostate cancer. Cancer Res 2018;78:5236.
232. Neklesa T, Snyder LB, Willard RR, Vitale N, Pizzano J, Gordon DA, et al. ARV-110:an oral androgen receptor PROTAC degrader for prostate cancer. J Clin Oncol 2019;37:259.
233. Arvinas. ARV-110:targeting the androgen receptor[Internet].[updated 2019 Mar 25]. Available from:http://arvinas.com/therapeutic-programs/androgen-receptor/.
234. Ciulli A, Zengerle M, Chan KH. Derivatives of 1-[(Cyclopentyl or 2-pyrrolidinyl)carbonylaminomethyl]-4-(1,3-thiazol-5-yl) benzene which are useful for the treatment of proliferative, autoimmune or inflammatory diseases. 2018 Feb 22. United States Patent US 20180050021A1.
235. Crew AP, Wang J, Dong H, Qian Y, Crews CM. Tank-binding kinase-1 PROTACs and associated methods of use. 2018 May 31. United States Patent US 20180147202.
236. Crew AP, Crews C, Dong H, Wang J, Qian Y, Siu K, et al. Imidebased modulators of proteolysis and associated methods of use. 2016 Mar 3. United States Patent US 20160058872.
237. Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of nonesmall-cell lung cancer to gefitinib. N Engl J Med 2005;352:786-92.
238. An S, Fu L. Small-molecule PROTACs:an emerging and promising approach for the development of targeted therapy drugs. EBioMedicine 2018;36:553-62.
239. Moon S, Lee BH. Chemically induced cellular proteolysis:an emerging therapeutic strategy for undruggable targets. Mol Cells 2018;41:933-42.
240. Yang H, Higgins B, Kolinsky K, Packman K, Go Z, Iyer R, et al. RG7204(PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res 2010;70:5518-27.
241. Churcher I. PROTAC-induced protein degradation in drug discovery:breaking the rules or just making new ones?. J Med Chem 2018;61:444-52.
242. Demizu Y, Shibata N, Hattori T, Ohoka N, Motoi H, Misawa T, et al. Development of BCR-ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand. Bioorg Med Chem Lett 2016;26:4865-9.
243. Zhang L, Riley-Gillis B, Vijay P, Shen Y. Acquired resistance to BET-PROTACs (proteolysis-targeting chimeras) caused by genomic alterations in core components of E3 ligase complexes. Mol Cancer Ther 2019;18:1302-11.
244. Suh J, Yoo SH, Kim MG, Jeong K, Ahn JY, Kim MS, et al. Cleavage agents for soluble oligomers of amyloid b peptides. Angew Chem Int Ed Engl 2007;46:7064-7.
245. Wu WH, Lei P, Liu Q, Hu J, Gunn AP, Chen MS, et al. Sequestration of copper from b-amyloid promotes selective lysis by cyclen-hybrid cleavage agents. J Biol Chem 2008;283:31657-64.
246. Chu TT, Li QQ, Qiu T, Sun ZY, Hu ZW, Chen YX, et al. Clearance of the intracellular high level of the tau protein directed by an artificial synthetic hydrolase. Mol BioSyst 2014;10:3081-5.
247. Suh J, Chei WS, Lee TY, Kim MG, Yoo SH, Jeong K, et al. Cleavage agents for soluble oligomers of human islet amyloid polypeptide. J Biol Inorg Chem 2008;13:693-701.
248. Jeong KH, Chung WY, Kye YS, Kim DW, Song SU. Cu(II) cyclen cleavage agent with BTA-derived binding group for H-IAPP. Bull Korean Chem Soc 2011;32:1751-3.
249. Hu J, Yu YP, Cui W, Fang CL, Wu WH, Zhao YF, et al. Cyclenhybrid compound captures copper to protect INS-1 cells from islet amyloid polypeptide cytotoxicity by inhibiting and lysing effects. Chem Commun 2010;46:8023-5.
250. Klein AN, Corda E, Gilch S. Peptide aptamer-mediated modulation of prion protein a-cleavage as treatment strategy for prion and other neurodegenerative diseases. Neural Regen Res 2018;13:2108-10.
251. Xue Y, Gao X, Cao J, Liu Z, Jin C, Wen L, et al. A summary of computational resources for protein phosphorylation. Curr Protein Pept Sci 2010;11:485-96.
252. Nishi H, Shaytan A, Panchenko AR. Physicochemical mechanisms of protein regulation by phosphorylation. Front Genet 2014;5:270.
253. Schlessinger J, Lemmon MA. SH2 and PTB domains in tyrosine kinase signaling. Sci STKE 2003;2003:re12.
254. Tan AC, Vyse S, Huang PH. Exploiting receptor tyrosine kinase coactivation for cancer therapy. Drug Discov Today 2017;22:72-84.
255. Asanuma H, Torigoe T, Kamiguchi K, Hirohashi Y, Ohmura T, Hirata K, et al. Survivin expression is regulated by coexpression of human epidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-kinase/AKT signaling pathway in breast cancer cells. Cancer Res 2005;65:11018-25.
256. Regad T. Targeting RTK signaling pathways in cancer. Cancers (Basel) 2015;7:1758-84.
257. Hines J, Gough JD, Corson TW, Crews CM. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proc Natl Acad Sci U S A 2013;110:8942-7.
258. Chatterjee S, Mudher A. Alzheimer's disease and type 2 diabetes:a critical assessment of the shared pathological traits. Front Neurosci 2018;12:383.
259. Chesser AS, Pritchard SM, Johnson GV. Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol 2013;4:122.
260. Vilchez D, Saez I, Dillin A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 2014;5:5659.
261. Katsumoto A, Takeuchi H, Takahashi K, Tanaka F. Microglia in Alzheimer's disease:risk factors and inflammation. Front Neurol 2018;9:978.
262. Leestemaker Y, De Jong A, Witting KF, Penning R, Schuurman K, Rodenko B, et al. Proteasome activation by small molecules. Cell Chem Biol 2017;24:725-736.e7.
263. Gao N, Chen YX, Zhao YF, Li YM. Chemical methods to knock down the amyloid proteins. Molecules 2017;22:916.
264. Gao N, Chu TT, Li QQ, Lim YJ, Qiu T, Ma MR, et al. Hydrophobic tagging-mediated degradation of Alzheimer's disease related tau. RSC Adv 2017;7:40362-6.
265. Silva MC, Ferguson FM, Cai Q, Donovan KA, Nandi G, Patnaik D, et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife 2019;8:e45457.
266. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2012;64:4-17.
267. Hitchcock SA, Pennington LD. Structure-brain exposure relationships. J Med Chem 2006;49:7559-83.
268. Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci 2012; 3:50-68.
269. Palmer AM, Alavijeh MS. Translational CNS medicines research. Drug Discov Today 2012;17:1068-78.
270. Fischer H, Gottschlich R, Seelig A. Blood-brain barrier permeation:molecular parameters governing passive diffusion. J Membr Biol 1998;165:201-11.
271. Galdeano C. Drugging the undruggable:targeting challenging E3 ligases for personalized medicine. Future Med Chem 2017;9:347-50.
272. Maniaci C, Hughes SJ, Testa A, Chen W, Lamont DJ, Rocha S, et al. Homo-PROTACs:bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat Commun 2017;8:830.
273. Steinebach C, Lindner S, Udeshi ND, Mani DC, Kehm H, Köpff S, et al. Homo-PROTACs for the chemical knockdown of cereblon. ACS Chem Biol 2018;13:2771-82.
274. Girardini M, Maniaci C, Hughes SJ, Testa A, Ciulli A. Cereblon versus VHL:hijacking E3 ligases against each other using PROTACs. Bioorg Med Chem 2019;27:2466-79.
275. Nabet B, Roberts JM, Buckley DL, Paulk J, Dastjerdi S, Yang A, et al. The dTAG system for immediate and target-specific protein degradation. Nat Chem Biol 2018;14:431-41.
276. Nalawansha DA, Paiva SL, Rafizadeh DN, Pettersson M, Qin L, Crews CM. Targeted protein internalization and degradation by ENDosome TArgeting chimeras (ENDTACs). ACS Cent Sci 2019;5:1079-84.
277. Huisgen R, Szeimies G, Möbius L. 1.3-Dipolare cycloadditionen, XXXII. Kinetik der Additionen organischer Azide a CC-Mehrfachbindungen. Chem Ber 1967;100:2494-507.
278. Amblard F, Cho JH, Schinazi RF. Cu(I)-catalyzed huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem Rev 2009;109:4207-20.
279. Lebraud H, Wright DJ, Johnson CN, Heightman TD. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent Sci 2016;2:927-34.
280. Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, Jaime-Figueroa S, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol 2018;25:78-87.e5.
281. Zhang X, Crowley VM, Wucherpfennig TG, Dix MM, Cravatt BF. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat Chem Biol 2019;15:737-46.
282. Watt GF, Scott-Stevens P, Gaohua L. Targeted protein degradation in vivo with proteolysis targeting chimeras:current status and future considerations. Drug Discov Today Technol 2019;31:69-80.
283. Arvinas presents preclinical data on protein degrader, ARV-471, at the 2018 San Antonio breast cancer symposium (SABCS)[Internet].[updated 2018 Dec 9]. Available from:http://www.firstwordpharma.com/node/1610303?tsidZ17#axzz5tROLEB8T.
284. Arvinas receives authorization to proceed for ARV-471, a PROTAC protein degrader to treat patients with locally advanced or metastatic ER+/HER2-breast cancer[Internet].[updated 2019 Jun 25]. Available from:http://www.firstwordpharma.com/node/1649497?TsidZ4#axzz5rv2bsalg.
285. Kelleher J, Campbell V, Chen J, Gollob J, Ji N, Kamadurai H, et al. KYM-001, a first-in-class oral IRAK4 protein degrader, induces tumor regression in xenograft models of MYD88-mutant ABC DLBCL alone and in combination with BTK inhibition. Hematol Oncol 2019;37:129.