Original articles
Zhihua Wang, Wenbo Wu, Xiangchen Guan, Shuang Guo, Chaowen Li, Ruixue Niu, Jie Gao, Min Jiang, Liping Bai, Elaine Laihan Leung, Yuanyuan Hou, Zhihong Jiang, Gang Bai. 20(S)-Protopanaxatriol promotes the binding of P53 and DNA to regulate the antitumor network via multiomic analysis[J]. Acta Pharmaceutica Sinica B, 2020, 10(6): 1020-1035

20(S)-Protopanaxatriol promotes the binding of P53 and DNA to regulate the antitumor network via multiomic analysis
Zhihua Wanga, Wenbo Wua, Xiangchen Guana, Shuang Guoa, Chaowen Lia, Ruixue Niua, Jie Gaoa, Min Jianga, Liping Baib, Elaine Laihan Leungb, Yuanyuan Houa, Zhihong Jiangb, Gang Baia
a State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China;
b State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
Although the tumor suppressor P53 is known to regulate a broad network of signaling pathways, it is still unclear how certain drugs influence these P53 signaling networks.Here, we useda comprehensive singlecell multiomics view of the effects of ginsenosides on cancer cells. Transcriptome and proteome profiling revealed that the antitumor activity of ginsenosides is closely associated with P53 protein. A miRNA-proteome interaction network revealed that P53 controlled the transcription of at least 38 proteins, and proteomemetabolome profiling analysis revealed that P53 regulated proteins involved in nucleotide metabolism, amino acid metabolism and "Warburg effect". The results of integrative multiomics analysis revealed P53 protein as a potential key target that influences the anti-tumor activity of ginsenosides. Furthermore, by applying affinity mass spectrometry (MS) screening and surface plasmon resonance fragment library screening, we confirmed that 20(S)-protopanaxatriol directly targeted adjacent regions of the P53 DNA-binding pocket and promoted the stability of P53-DNA interactions, which further induced a series of omics changes.
Key words:    Multiomics analysis    P53    20(S)-Protopanaxatriol    DNA binding    Ginsenosides anti-tumor network   
Received: 2019-09-01     Revised: 2019-12-02
DOI: 10.1016/j.apsb.2020.01.017
Funds: This research was supported by International Cooperation and Exchange of the National Natural Science Foundation of China (No. 81761168039), Macau Science and Technology Development 345 Fund (No. 015/2017/AFJ, China), and National Key Research and Development Program of China (Nos. 2018YFC1704800 and 2018YFC1704805).
Corresponding author: Yuanyuan Hou, Zhihong Jiang, Gang Bai     Email:houyy@nankai.edu.cn;zhjiang@must.edu.mo;gangbai@nankai.edu.cn
Author description:
PDF(KB) Free
Zhihua Wang
Wenbo Wu
Xiangchen Guan
Shuang Guo
Chaowen Li
Ruixue Niu
Jie Gao
Min Jiang
Liping Bai
Elaine Laihan Leung
Yuanyuan Hou
Zhihong Jiang
Gang Bai

1. Kastenhuber ER, Lowe SW. Putting P53 in context. Cell 2017;170:1062-78.
2. Yu ZY, Wu FL, Chen L, Li Q, Wang CJ, Dong JH, et al. ETME, a novel beta-elemene derivative, synergizes with arsenic trioxide in inducing apoptosis and cell cycle arrest in hepatocarcinoma cells via a P53-dependent pathway. Acta Pharm Sin B 2014;4:424-9.
3. Kotler E, Shani O, Goldfeld G, Lotan-Pompan M, Tarcic O, Gershoni A, et al. A systematic P53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol Cell 2018;71:178-190. e8.
4. Mello SS, Valente LJ, Raj N, Seoane JA, Flowers BM, McClendon J, et al. A P53 super-tumor suppressor reveals a tumor suppressive P53-Ptpn14-Yap axis in pancreatic cancer. Cancer Cell 2017;32:460-473. e6.
5. Krell J, Stebbing J, Frampton AE, Carissimi C, Harding V, de Giorgio A, et al. The role of TP53 in miRNA loading onto AGO2 and in remodelling the miRNAemRNA interaction network. Lancet 2015; 385(Suppl. 1):S15.
6. Li L, Wu J, Sima X, Bai P, Deng W, Deng X, et al. Interactions of miR-34b/c and TP-53 polymorphisms on the risk of nasopharyngeal carcinoma. Tumour Biol 2013;34:1919-23.
7. Salvoza NC, Klinzing DC, Gopez-Cervantes J, Baclig MO. Association of circulating serum miR-34a and miR-122 with dyslipidemia among patients with non-alcoholic fatty liver disease. PLoS One 2016; 11:e0153497.
8. Jain AK, Barton MC. Outside the P53 RING:transcription regulation by chromatin-bound MDM2. Mol Cell 2016;62:805-7.
9. Marques-Torrejon MA, Porlan E, Banito A, Gomez-Ibarlucea E, Lopez-Contreras AJ, Fernandez-Capetillo O, et al. Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell 2013;12:88-100.
10. Pan R, Ruvolo V, Mu H, Leverson JD, Nichols G, Reed JC, et al. Synthetic lethality of combined BCL-2 inhibition and P53 activation in AML:mechanisms and superior antileukemic efficacy. Cancer Cell 2017;32:748-760. e6.
11. Wang L, Xiong H, Wu F, Zhang Y, Wang J, Zhao L, et al. Hexokinase 2-mediated Warburg effect is required for PTEN- and P53-deficiencydriven prostate cancer growth. Cell Rep 2014;8:1461-74.
12. Johnson RF, Perkins ND. Nuclear factor-kappaB, P53, and mitochondria:regulation of cellular metabolism and the Warburg effect. Trends Biochem Sci 2012;37:317-24.
13. Fenoglio-Preiser CM, Wang J, Stemmermann GN, Noffsinger A. TP53 and gastric carcinoma:a review. Hum Mutat 2003;21:258-70.
14. Low TY, van Heesch S, van den Toorn H, Giansanti P, Cristobal A, Toonen P, et al. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis. Cell Rep 2013;5:1469-78.
15. Verstraeten SL, Albert M, Paquot A, Muccioli GG, Tyteca D, Mingeot-Leclercq MP. Membrane cholesterol delays cellular apoptosis induced by ginsenoside Rh2, a steroid saponin. Toxicol Appl Pharmacol 2018;352:59-67.
16. Wang XJ, Zhou RJ, Zhang N, Jing Z. 20(S)-Ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to icotinib through inhibition of autophagy. Eur J Pharmacol 2019;850:141-9.
17. Lin MB, Sun W, Gong W, Ding YS, Zhuang YY, Hou Q. Ginsenoside Rg1 protects against transient focal cerebral ischemic injury and suppresses its systemic metabolic changes in cerabral injury rats. Acta Pharm Sin B 2015;5:277-84.
18. He CY, Feng R, Sun YP, Chu SF, Chen J, Ma C, et al. Simultaneous quantification of ginsenoside Rg1 and its metabolites by HPLC-MS/MS:Rg1 excretion in rat bile, urine and feces. Acta Pharm Sin B 2016;6:593-9.
19. Wang Z, Kim U, Jiao Y, Li C, Guo Y, Ma X, et al. Quantitative proteomics combined with affinity MS revealed the molecular mechanism of ginsenoside antitumor effects. J Proteome Res 2019;18:2100-8.
20. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, et al. DIANA-microT web server v5.0:service integration into miRNA functional analysis workflows. Nucleic Acids Res 2013;41:W169-73.
21. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO:a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009;25:1091-3.
22. McDowall MD, Scott MS, Barton GJ. PIPs:human protein-protein interaction prediction database. Nucleic Acids Res 2009;37:D651-6.
23. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11:proteineprotein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47:D607-13.
24. Zhou G, Xia J. OmicsNet:a web-based tool for creation and visual analysis of biological networks in 3D space. Nucleic Acids Res 2018; 46:W514-22.
25. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-504.
26. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015;4:e05005.
27. Chong J, Yamamoto M, Xia J. MetaboAnalystR 2.0:from raw spectra to biological insights. Metabolites 2019;9:57.
28. Bullock AN, Henckel J, DeDecker BS, Johnson CM, Nikolova PV, Proctor MR, et al. Thermodynamic stability of wild-type and mutant P53 core domain. Proc Natl Acad Sci U S A 1997;94:14338-42.
29. Joerger AC, Ang HC, Veprintsev DB, Blair CM, Fersht AR. Structures of P53 cancer mutants and mechanism of rescue by second-site suppressor mutations. J Biol Chem 2005;280:16030-7.
30. Fu X, Wang Z, Li L, Dong S, Li Z, Jiang Z, et al. Novel chemical ligands to ebola virus and marburg virus nucleoproteins identified by combining affinity mass spectrometry and metabolomics approaches. Sci Rep 2016;6:29680.
31. Wang Z, Kim U, Liu J, Cheng C, Wu W, Guo S, et al. Comprehensive TCM molecular networking based on MS/MS in silico spectra with integration of virtual screening and affinity MS screening for discovering functional ligands from natural herbs. Anal Bioanal Chem 2019;411:5785-97.
32. Golovenko D, Brauning B, Vyas P, Haran TE, Rozenberg H, Shakked Z. New insights into the role of DNA shape on its recognition by P53 proteins. Structure 2018;26:1237-1250. e6.
33. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, et al. Glide:a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 2004;47:1750-9.
34. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 2014;42:W320-4.
35. Kovalski JR, Bhaduri A, Zehnder AM, Neela PH, Che Y, Wozniak GG, et al. The functional proximal proteome of oncogenic Ras includes mTORC2. Mol Cell 2019;73:830-44. e12.
36. Schell JC, Olson KA, Jiang L, Hawkins AJ, Van Vranken JG, Xie J, et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol Cell 2014;56:400-13.
37. Maddocks OD, Labuschagne CF, Adams PD, Vousden KH. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol Cell 2016;61:210-21.
38. Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP, Peacock DL, et al. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell 2014; 54:820-31.
39. Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 2012;48:612-26.
40. Sodrul IMD, Wang C, Chen X, Du J, Sun H. Role of ginsenosides in reactive oxygen species-mediated anticancer therapy. Oncotarget 2018;9:2931-50.
41. Baud MGJ, Bauer MR, Verduci L, Dingler FA, Patel KJ, Horil Roy D, et al. Aminobenzothiazole derivatives stabilize the thermolabile P53 cancer mutant Y220C and show anticancer activity in P53-Y220C cell lines. Eur J Med Chem 2018;152:101-14.
42. Zhang Y, Wang ZH, Ma XY, Yang SN, Hu XY, Tao J, et al. Glycyrrhetinic acid binds to the conserved P-loop region and interferes with the interaction of RAS-effector proteins. Acta Pharm Sin B 2019;9:294-303.
43. Wang WW, Liu C, Zhu NY, Lin Y, Jiang JD, Wang YC, et al. Identification of anti-Gram-negative bacteria agents targeting the interaction between ribosomal proteins L12 and L10. Acta Pharm Sin B 2018;8:772-83.
44. Yang SN, Zhang Y, Shen FK, Ma XY, Zhang M, Hou YY, et al. The flavonoid baicalin improves glucose metabolism by targeting the PH domain of AKT and activating AKT/GSK3 beta phosphorylation. FEBS Lett 2019;593:175-86.
45. Ma X, Zhang Y, Wang Z, Shen Y, Zhang M, Nie Q, et al. Ursolic acid, a natural nutraceutical agent, targets caspase3 and alleviates inflammation-associated downstream signal transduction. Mol Nutr Food Res 2017;61:1700332.
46. Han X, Jiang H, Han L, Xiong X, He YN, Fu CM, et al. A novel quantified bitterness evaluation model for traditional Chinese herbs based on an animal ethology principle. Acta Pharm Sin B 2018;8:209-17.
47. Wang Z, Liang H, Cao H, Zhang B, Li J, Wang W, et al. Efficient ligand discovery from natural herbs by integrating virtual screening, affinity mass spectrometry and targeted metabolomics. Analyst 2019; 144:2881-90.
48. Sorenson EC, Khanin R, Bamboat ZM, Cavnar MJ, Kim TS, Sadot E, et al. Genome and transcriptome profiling of fibrolamellar hepatocellular carcinoma demonstrates P53 and IGF2BP1 dysregulation. PLoS One 2017;12:e0176562.
49. Wang B, Niu D, Lam TH, Xiao Z, Ren EC. Mapping the P53 transcriptome universe using P53 natural polymorphs. Cell Death Differ 2014;21:521-32.
50. Vig S, Talwar P, Kaur K, Srivastava R, Srivastava AK, Datta M. Transcriptome profiling identifies P53 as a key player during calreticulin deficiency:implications in lipid accumulation. Cell Cycle 2015; 14:2274-84.
51. Jones J, Faustino V, Nogaj L. Cloning the P53 DNA binding domain. Faseb J 2018;32:892-6638.
52. He F, Borcherds W, Song TJ, Wei X, Das M, Chen LH, et al. Interaction between P53 N terminus and core domain regulates specific and nonspecific DNA binding. Proc Natl Acad Sci U S A 2019;116:8859-68.
53. Pradhan MR, Siau JW, Kannan S, Nguyen MN, Ouaray Z, Kwoh CK, et al. Simulations of mutant P53 DNA binding domains reveal a novel druggable pocket. Nucleic Acids Res 2019;47:1637-52.
54. Ma J, Chen T, Wu S, Yang C, Bai M, Shu K, et al. iProX:an integrated proteome resource. Nucleic Acids Res 2019;47:D1211-7.
55. Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C, et al. Metabolomics Workbench:an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res 2016;44:D463-70.
Similar articles: