Original articles
Yan Chen, Chen Chen, Xiaojuan Zhang, Chuanchuan He, Pengxuan Zhao, Minsi Li, Ting Fan, Ruicong Yan, Yao Lu, Robert J. Lee, Muhammad Waseem Khan, Muhammad Sarfraz, Xiang Ma, Tan Yang, Guangya Xiang. Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects[J]. Acta Pharmaceutica Sinica B, 2020, 10(6): 1106-1121

Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects
Yan Chena, Chen Chena, Xiaojuan Zhanga, Chuanchuan Hea, Pengxuan Zhaoa, Minsi Lia, Ting Fana, Ruicong Yana, Yao Lua, Robert J. Leeb, Muhammad Waseem Khana, Muhammad Sarfraza, Xiang Maa, Tan Yanga, Guangya Xianga
a School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
b College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
Platinum-based chemotherapy is used for non-small cell lung cancer (NSCLC). However, it has side effects and minimum efficacy against lung cancer metastasis. In this study, platinu-mecurcumin complexes were loaded into pH and redox dual-responsive nanoparticles (denoted as Pt-CUR@PSPPN) to facilitate intracellular release and synergistic anti-cancer effects. Pt-CUR@PSPPN was prepared by a nano-precipitation method and had a diameter of ~100 nm. The nanoparticles showed increased anticancer effects both in vivo and in vitro. In addition, Pt-CUR@PSPPN blocked PI3K/AKT signal transduction pathway and inhibited MMP2 and VEGFR2, resulting in enhanced anti-metastatic activity. Furthermore, reduced side effects were also observed. In conclusion, Pt-CUR@PSPPN provided a novel and attractive therapeutic strategy for NSCLC.
Key words:   
Received: 2019-07-13     Revised: 2019-09-27
DOI: 10.1016/j.apsb.2019.10.011
Funds: This work was supported by the Programs of the National Natural Science Foundation of China (Grant Nos. 81673368, 81603046, 81703446 and 81973257). The authors thank the Analytical & Testing Center of Huazhong University of Science & Technology for 1H NMR, ESI-MS and TEM measurements.
Corresponding author: Xiang Ma, Tan Yang, Guangya Xiang     Email:xiangma@hust.edu.cn;yangtan0120@hust.edu.cn;gyxiang1968@hotmail.com
Author description:
PDF(KB) Free

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.
2. Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer 2017;17:637-58.
3. Hata A, Katakami N, Yoshioka H, Kaji R, Masago K, Fujita S, et al. Spatiotemporal T790M heterogeneity in individual patients with EGFR-mutant non-small-cell lung cancer after acquired resistance to EGFR-TKI. J Thorac Oncol 2015;10:1553-9.
4. Kumarakulasinghe NB, van Zanwijk N, Soo RA. Molecular targeted therapy in the treatment of advanced stage non-small cell lung cancer (NSCLC). Respirology 2015;20:370-8.
5. Wang T, Nelson RA, Bogardus A, Grannis Jr FW. Five-year lung cancer survival:which advanced stage nonsmall cell lung cancer patients attain long-term survival?. Cancer 2010;116:1518-25.
6. Chang A. Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer 2011;71:3-10.
7. Kudinov AE, Deneka A, Nikonova AS, Beck TN, Ahn YH, Liu X, et al. Musashi-2 (MSI2) supports TGF-b signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis. Proc Natl Acad Sci U S A 2016;113:6955-60.
8. Shi L, Zhang B, Sun X, Lu S, Liu Z, Liu Y, et al. MiR-204 inhibits human NSCLC metastasis through suppression of NUAK1. Br J Cancer 2014;111:2316-27.
9. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015;372:2018-28.
10. Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med 2004;350:351-60.
11. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 2005;4:307-20.
12. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity:a review. Am J Med Sci 2007;334:115-24.
13. Yang T, Chen Y, Zhao P, Xue H, You J, Li B, et al. Enhancing the therapeutic effect via elimination of hepatocellular carcinoma stem cells using Bmi1 siRNA delivered by cationic cisplatin nanocapsules. Nanomedicine 2018;14:2009-21.
14. Jovanovic SV, Steenken S, Boone CW, Simic MG. H-atom transfer is a preferred antioxidant mechanism of curcumin. J Am Chem Soc 1999; 121:9677-81.
15. Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A, et al. Treatment of non-alcoholic fatty liver disease with curcumin:a randomized placebo-controlled trial. Phytother Res 2016;30:1540-8.
16. Yousef MI, Omar SA, El-Guendi MI, Abdelmegid LA. Potential protective effects of quercetin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver and kidney functions and haematotoxicity in rat. Food Chem Toxicol 2010;48:3246-61.
17. Wang J, Wang H, Zhu R, Liu Q, Fei J, Wang S. Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1b transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials 2015;53:475-83.
18. Qin Y, Lin L, Chen Y, Wu S, Si X, Wu H, et al. Curcumin inhibits the replication of enterovirus 71 in vitro. Acta Pharm Sin B 2014;4:284-94.
19. Yallapu MM, Khan S, Maher DM, Ebeling MC, Sundram V, Chauhan N, et al. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 2014;35:8635-48.
20. Kuhad A, Pilkhwal S, Sharma S, Tirkey N, Chopra K. Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. J Agric Food Chem 2007;55:10150-5.
21. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 2008;269:199-225.
22. Lin SS, Lai KC, Hsu SC, Yang JS, Kuo CL, Lin JP, et al. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and-9 and vascular endothelial growth factor (VEGF). Cancer Lett 2009;285:127-33.
23. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631-51.
24. Chen Y, Cheng Y, Zhao P, Zhang S, Li M, He C, et al. Co-delivery of doxorubicin and imatinib by pH sensitive cleavable PEGylated nanoliposomes with folate-mediated targeting to overcome multidrug resistance. Int J Pharm 2018;542:266-79.
25. Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 2011;63:170-83.
26. Guo S, Wang Y, Miao L, Xu Z, Lin CM, Zhang Y, et al. Lipid-coated cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS Nano 2013;7:9896-904.
27. Wilson JJ, Lippard SJ. In vitro anticancer activity of cis-diammineplatinum(II) complexes with b-diketonate leaving group ligands. J Med Chem 2012;55:5326-36.
28. Zhang T, Chen Y, Ge Y, Hu Y, Li M, Jin Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm Sin B 2018;8:440-8.
29. Zhang F, Ni Q, Jacobson O, Cheng S, Liao A, Wang Z, et al. Polymeric nanoparticles with a glutathione-sensitive heterodimeric multifunctional prodrug for in vivo drug monitoring and synergistic cancer therapy. Angew Chem Int Ed Engl 2018;57:7066-70.
30. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuliresponsive nanocarriers for drug and gene delivery. J Control Release 2008;126:187-204.
31. Wang X, Dai J, Chen Z, Zhang T, Xia G, Nagai T, et al. Bioavailability and pharmacokinetics of cyclosporine A-loaded pH-sensitive nanoparticles for oral administration. J Control Release 2004;97:421-9.
32. Yang S, Tang Z, Zhang D, Deng M, Chen X. pH and redox dualsensitive polysaccharide nanoparticles for the efficient delivery of doxorubicin. Biomater Sci 2017;5:2169-78.
33. Chen G, Wang Y, Xie R, Gong S. Tumor-targeted pH/redox dualsensitive unimolecular nanoparticles for efficient siRNA delivery. J Control Release 2017;259:105-14.
34. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu F, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007;28:869-76.
35. Mitra K, Gautam S, Kondaiah P, Chakravarty AR. The cis-diammineplatinum(II) complex of curcumin:a dual action DNA crosslinking and photochemotherapeutic agent. Angew Chem Int Ed Engl 2015;54:13989-93.
36. Liu C, Yuan J, Luo X, Chen M, Chen Z, Zhao Y, et al. Folate-decorated and reduction-sensitive micelles assembled from amphiphilic polymerecamptothecin conjugates for intracellular drug delivery. Mol Pharm 2014;11:4258-69.
37. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships:the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984;22:27-55.
38. Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Today 2012;7:53-65.
39. Missirlis D, Kawamura R, Tirelli N, Hubbell JA. Doxorubicin encapsulation and diffusional release from stable, polymeric, hydrogel nanoparticles. Eur J Pharm Sci 2006;29:120-9.
40. Raza MK, Mitra K, Shettar A, Basu U, Kondaiah P, Chakravarty AR. Photoactive platinum(ii) b-diketonates as dual action anticancer agents. Dalton Trans 2016;45:13234-43.
41. Temel JS, Greer JA, Muzikansky A, Gallagher ER, Admane S, Jackson VA, et al. Early palliative care for patients with metastatic non-small-cell lung cancer. N Engl J Med 2010;363:733-42.
42. Zhong WZ, Wang Q, Mao WM, Xu ST, Wu L, Shen Y, et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage IIeIIIA (N1-N2) EGFR-mutant NSCLC (ADJUVANT/CTONG1104):a randomised, open-label, phase 3 study. Lancet Oncol 2018;19:139-48.
43. Gatzemeier U, Pluzanska A, Szczesna A, Kaukel E, Roubec J, De Rosa F, et al. Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer:the tarceva lung cancer investigation trial. J Clin Oncol 2007;25:1545-52.
44. Dasari S, Tchounwou PB. Cisplatin in cancer therapy:molecular mechanisms of action. Eur J Pharmacol 2014;740:364-78.
45. Yu H, Guo C, Feng B, Liu J, Chen X, Wang D, et al. Triple-layered pH-responsive micelleplexes loaded with siRNA and cisplatin prodrug for NF-kappa B targeted treatment of metastatic breast cancer. Theranostics 2016;6:14-27.
46. Rezaee R, Momtazi AA, Monemi A, Sahebkar A. Curcumin:a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res 2017;117:218-27.
47. Miao L, Guo S, Zhang J, Kim WY, Huang L. Nanoparticles with precise ratiometric co-loading and co-delivery of gemcitabine monophosphate and cisplatin for treatment of bladder cancer. Adv Funct Mater 2014;24:6601-11.
48. Waseem M, Kaushik P, Parvez S. Mitochondria-mediated mitigatory role of curcumin in cisplatin-induced nephrotoxicity. Cell Biochem Funct 2013;31:678-84.
Similar articles: