Reviews
Yizhen Yin, Fener Chen. Targeting human MutT homolog 1 (MTH1) for cancer eradication: current progress and perspectives[J]. Acta Pharmaceutica Sinica B, 2020, 10(12): 2259-2271

Targeting human MutT homolog 1 (MTH1) for cancer eradication: current progress and perspectives
Yizhen Yina, Fener Chena,b,c
a Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
b Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China;
c Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
Abstract:
Since accelerated metabolism produces much higher levels of reactive oxygen species (ROS) in cancer cells compared to ROS levels found in normal cells, human MutT homolog 1 (MTH1), which sanitizes oxidized nucleotide pools, was recently demonstrated to be crucial for the survival of cancer cells, but not required for the proliferation of normal cells. Therefore, dozens of MTH1 inhibitors have been developed with the aim of suppressing cancer growth by accumulating oxidative damage in cancer cells. While several inhibitors were indeed confirmed to be effective, some inhibitors failed to kill cancer cells, complicating MTH1 as a viable target for cancer eradication. In this review, we summarize the current status of developing MTH1 inhibitors as drug candidates, classify the MTH1 inhibitors based on their structures, and offer our perspectives toward the therapeutic potential against cancer through the targeting of MTH1.
Key words:    Oxidized nucleotide    MTH1    Inhibitor    Anticancer    DNA repair   
Received: 2019-12-12     Revised: 2020-02-11
DOI: 10.1016/j.apsb.2020.02.012
Funds: This work was funded by the grant from the National Natural Science Foundation of China (81903425, to Yizhen Yin).
Corresponding author: Fener Chen, rfchen@fudan.edu.cn     Email:rfchen@fudan.edu.cn
Author description:
Service
PDF(KB) Free
Print
0
Authors
Yizhen Yin
Fener Chen

References:
1. Lindahi T. Instability and decay of the primary structure of DNA. Nature 1993;362:709-15.
2. Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease:induction, repair and significance. Mutation Res 2004;567:1-61.
3. Topal MD, Baker MS. DNA precursor pool:a significant target for Nmethyl-N-nitrosourea in C3H/10T1/2 clone 8 cells. Proc Natl Acad Sci U S A 1982;79:2211-5.
4. Burrows CJ, Muller JG. Oxidative nucleobase modifications leading to strand scission. Chem Rev 1998;98:1109-52.
5. Maynard S, Schurman SH, Harboe C, Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2009;30:2-10.
6. Shibutani S, Takeshita M, Grollaman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 1991;349:431-4.
7. Hsu GW, Ober M, Carell T, Beese LS. Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase. Nature 2004;431:217-21.
8. David SS, O'Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature 2007;447:941-50.
9. Tsuzuki T, Nakatsu Y, Nakabeppu Y. Significance of error-avoiding mechanisms for oxidative DNA damage in carcinogenesis. Cancer Sci 2007;98:465-70.
10. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nature Rev Cancer 2011;11:85-95.
11. Gad H, Koolmeister T, Jemth AS, Eshtad S, Jacques SA, Ström CE, et al. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature 2014;508:215-21.
12. Huber KV, Salah E, Radic B, Gridling M, Elkins JM, Stukalov A, et al. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature 2014;508:222-7.
13. Nakabeppu Y, Ohta E, Abolhassani N. MTH1 as a nucleotide pool sanitizing enzyme:friend or foe?. Free Radical Biol Med 2017;107:151-8.
14. Papeo G. MutT Homolog 1 (MTH1):the silencing of a target. J Med Chem 2016;59:2343-5.
15. Sakai Y, Furuichi M, Takahashi M, Mishima M, Iwai S, Shirakawa M, Nakabeppu Y. A molecular basis for the selective recognition of 2-hydroxy-dATP and 8-oxo-dGTP by human MTH1. J Biol Chem 2002;277:8579-87.
16. Fujikawa K, Kamiya H, Yakushiji H, Fujii Y, Nakabeppu Y, Kasai H. The oxidized forms of dATP are substrates for the human MutT homologue, the hMTH1 protein. J Biol Chem 1999;274:18201-5.
17. Fujikawa K, Kamiya H, Yakushiji H, Nakabeppu Y, Kasai H. Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxyATP. Nucleic Acids Res 2001;29:449-54.
18. Kamiya H, Yakushiji H, Dugué L, Tanimoto M, Pochet S, Nakabeppu Y, Harashima H. Probing the substrate recognition mechanism of the human MTH1 protein by nucleotide analogs. J Mol Biol 2004;336:843-50.
19. Fujikawa K, Yakushiji H, Nakabeppu Y, Suzuki T, Matsuda M, Ohshima H, et al. 8-Chloro-dGTP, a hypochlorous acid-modified nucleotide, is hydrolyzed by hMTH1, the human MutT homolog. FEBS Lett 2002;512:149-51.
20. Mishima M, Sakai Y, Itoh N, Kamiya H, Furuichi M, Takahashi M, et al. Structure of human MTH1, a nudix family hydrolase that selectively degrades oxidized purine nucleoside triphosphates. J Biol Chem 2004;279:33806-15.
21. Svensson LM, Jemth AS, Desroses M, Loseva O, Helleday T, Högbom M, et al. Crystal structure of human MTH1 and the 8-oxodGMP product complex. FEBS Lett 2011;585:2617-21.
22. Kettle JG, Alwan H, Bista M, Breed J, Davies NL, Eckersley K, et al. Potent and selective inhibitors of MTH1 probe its role in cancer cell survival. J Med Chem 2016;59:2346-61.
23. Dong L, Wang H, Niu J, Zou M, Wu N, Yu D, et al. Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1. OncoTargets Ther 2015;8:3649-64.
24. Gao Y, Zhu L, Guo J, Yuan T, Wang L, Li H, et al. Farnesyl phenolic enantiomers as natural MTH1 inhibitors from Ganoderma sinense. Oncotarget 2017;8:95865-79.
25. Yokoyama T, Kitakami R, Mizuguchi M. Discovery of a new class of MTH1 inhibitor by X-ray crystallographic screening. Eur J Med Chem 2019;167:153-60.
26. Berglund UW, Sanjiv K, Gad H, Kalderen C, Koolmeister T, Pham T, et al. Validation and development of MTH1 inhibitors for treatment of cancer. Ann Oncol 2016;27:2275-83.
27. Petrocchi A, Leoy E, Reyna NJ, Hamilton MM, Shi X, Parker CA, et al. Identification of potent and selective MTH1 inhibitors. Bioorg Med Chem Lett 2016;26:1503-7.
28. Zhou W, Ma L, Yang J, Qiao H, Li L, Guo Q, et al. Potent and specific MTH1 inhibitors targeting gastric cancer. Cell Death Dis 2019;10:434.
29. Rudling A, Gustafsson R, Almlöf I, Homan E, Scobie M, Berglund UW, et al. Fragment-based discovery and optimization of enzyme inhibitors by docking of commercial chemical space. J Med Chem 2017;60:8160-9.
30. Kumar A, Kawamura T, Kawatani M, Osada H, Zhang KYJ. Identification and structureeactivity relationship of purine derivatives as novel MTH1 inhibitors. Chem Biol Drug Des 2017;89:862-9.
31. Kawamura T, Kawatani M, Muroi M, Kondoh Y, Futamura Y, Aono H, et al. Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival. Sci Rep 2016;6:26521.
32. Rahm F, Viklund J, Trésaugues L, Ellermann M, Giese A, Ericsson U, et al. Creation of a novel class of potent and selective MutT homologue 1 (MTH1) inhibitors using fragment-based screening and structure-based drug design. J Med Chem 2018; 61:2533-51.
33. Ellermann M, Eheim A, Rahm F, Viklund J, Guenther J, Andersson M, et al. Novel class of potent and cellularly active inhibitors devalidates MTH1 as broad-spectrum cancer target. ACS Chem Biol 2017;12:1986-92.
34. Park H, Park SB. Label-free target identification reveals oxidative DNA damage as the mechanism of a selective cytotoxic agent. Chem Sci 2019;10:3449-58.
35. Bialkowski K, Kasprzak KS. A novel assay of 8-oxo-20-deoxyguanosine 50-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activity in cultured cells and its use for evaluation of cadmium(II) inhibition of this activity. Nucleic Acids Res 1998; 26:3194-201.
36. Bialkowski K, Kasprzak KS. Inhibition of 8-oxo-2'-deoxyguanosine 5'-triphosphate pyrophosphohydrolase (8-oxodGTPase) activity of the antimutagenic human MTH1 protein by nucleoside 5'-diphosphates. Free Radic Biol Med 2003;35:595-602.
37. Takagi Y, Setoyama D, Ito R, Kamiya H, Yamagata Y, Sekiguchi M. Human MTH3 (NUDT18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates. J Biol Chem 2012;287:21541-9.
38. Yin Y, Sasaki S, Taniguchi Y. Inhibitory effect of 8-halogenated-7-deaza-2'-deoxyguanosine triphosphates on human 8-oxo-2'-deoxyguanosine triphosphatase, hMTH1, activities. ChemBioChem 2016;17:566-9.
39. Yin Y, Sasaki S, Taniguchi Y. Effects of 8-halo-7-deaza-2'-deoxyguanosine triphosphate on DNA synthesis by DNA polymerases and cell proliferation. Bioorg Med Chem 2016;24:3856-61.
40. Kasprzak KS, Bialkowski K. Inhibition of antimutagenic enzymes, 8-oxo-dGTPases, by carcinogenic metals. Recent developments. J Inorg Biochem 2000;79:231-6.
41. Streib M, Kräling K, Richter K, Xie X, Steuber H, Meggers E. An organometallic inhibitor for the human repair enzyme 7,8-dihydro-8-oxoguanosine triphosphatase. Angew Chem Int Ed 2014;53:305-9.
42. Rai P, Young JJ, Burton DG, Giribaldi MG, Onder TT, Weinberg RA. Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene 2011;30:1489-96.
43. Giribaldi MG, Munoz A, Halvorsen K, Patel A, Rai P. MTH1 expression is required for effective transformation by oncogenic HRAS. Oncotarget 2015;6:11519-29.
44. Patel A, Burton DG, Halvorsen K, Balkan W, Reiner T, PerezStable C, et al. MutT homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene 2015;34:2586-96.
45. Samaranayake GJ, Huynh M, Rai P. MTH1 as a chemotherapeutic target:the elephant in the room. Cancers 2017;9:47.
46. Ahmed W, Lingner J. PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase. Gene Dev 2018;32:658-69.
47. van der Waals LM, Laoukili J, Jongen JMJ, Raats DA, Borel Rinkes IHM, Kranenburg O. Differential anti-tumour effects of MTH1 inhibitors in patient-derived 3D colorectal cancer cultures. Sci Rep 2019;9:819.
48. Gul N, Karlsson J, Tängemo C, Linsefors S, Tuyizere S, Perkins R, et al. The MTH1 inhibitor TH588 is a microtubule-modulating agent that eliminates cancer cells by activating the mitotic surveillance pathway. Sci Rep 2019;9:14667.
49. Gad H, Mortusewicz O, Rudd SG, Stolz A, Amaral N, Brautigham L, et al. MTH1 promotes mitotic progression to avoid oxidative DNA damage in cancer cells. BioRxiv 2019. Available from:https://doi.org/10.1101/575290.
50. McPherson LA, Troccoli CI, Ji D, Bowles AE, Gardiner ML, Mohsen MG, et al. Increased MTH1-specific 8-oxodGTPase activity is a hallmark of cancer in colon, lung and pancreatic tissue. DNA Repair 2019;83:102644.
51. Arczewska KD, Stachurska A, Wojewódzka M, Karpi nska K, Kruszewski M, Nilsen H, et al. hMTH1 is required for maintaining migration and invasion potential of human thyroid cancer cells. DNA Repair 2018;69:53-62.
52. Li L, Song L, Liu X, Yang X, Li X, He T, et al. Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano 2017;11:95-111.
53. Zhang J, Jiang C, Figueiró Longo JP, Azevedo RB, Zhang H, Muehlmann LA. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B 2018;8:137-46.
54. Sun Y, Zhao D, Wang G, Wang Y, Cao L, Sun J, et al. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy:opportunities, challenges, and future development. Acta Pharm Sin B 2020;10:1382-96.
55. Fan H, Zhang L, Hu X, Zhao Z, Bai H, Fu X, et al. MTH1-targeted nanosystem for enhanced PDT via improving cellular sensitivity to reactive oxygen species. Chem Commun 2018;54:4310-3.
56. Zhao L, Li J, Su Y, Yang L, Chen L, Qiang L, et al. MTH1 inhibitor amplifies the lethality of reactive oxygen species to tumor in photodynamic therapy. Sci Adv 2020;6:eaaz0575.
Similar articles:
1.Qing Yu, Yihan Jiang, Yi Sun.Anticancer drug discovery by targeting cullin neddylation[J]. Acta Pharmaceutica Sinica B, 2020,10(5): 746-765
2.Ying Wu, Guoqiang Dong, Chunquan Sheng.Targeting necroptosis in anticancer therapy: mechanisms and modulators[J]. Acta Pharmaceutica Sinica B, 2020,10(9): 1601-1618
3.Liying Ma, Haojie Wang, Yinghua You, Chaoya Ma, Yuejiao Liu, Feifei Yang, Yichao Zheng, Hongmin Liu.Exploration of 5-cyano-6-phenylpyrimidin derivatives containing an 1,2,3-triazole moiety as potent FAD-based LSD1 inhibitors[J]. Acta Pharmaceutica Sinica B, 2020,10(9): 1658-1668
4.Wennan Zhao, Yuling Qiu, Dexin Kong.Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy[J]. Acta Pharmaceutica Sinica B, 2017,7(1): 27-37
5.Heggodu G. Rohit Kumar, Chethan S. Kumar, Hulihalli N. Kiran Kumar, Gopal M. Advi Rao.Inhibition of protein kinases by anticancer DNA intercalator, 4-butylaminopyrimido[4',5':4,5] thieno(2,3-b)quinoline[J]. Acta Pharmaceutica Sinica B, 2017,7(3): 303-310
6.Danqi Chen, Aijun Shen, Guanghua Fang, Hongchun Liu, Minmin Zhang, Shuai Tang, Bing Xiong, Lanping Ma, Meiyu Geng, Jingkang Shen.Tetrahydroisoquinolines as novel histone deacetylase inhibitors for treatment of cancer[J]. Acta Pharmaceutica Sinica B, 2016,6(1): 93-99
Similar articles: