Chunyong Ding, Zilan Song, Ancheng Shen, Tingting Chen, Ao Zhang. Small molecules targeting the innate immune cGAS-STING-TBK1 signaling pathway[J]. Acta Pharmaceutica Sinica B, 2020, 10(12): 2272-2298

Small molecules targeting the innate immune cGAS-STING-TBK1 signaling pathway
Chunyong Dinga,b,c, Zilan Songb,c, Ancheng Shenb,c, Tingting Chenb,c, Ao Zhanga,b,c
a Research Laboratory of Medicinal Chemical Biology&Frontiers on Drug Discovery(RLMCBFDD), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
b CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica(SIMM), Chinese Academy of Sciences, Shanghai 201203, China;
c University of Chinese Academy of Sciences, Beijing 100049, China
Multiple cancer immunotherapies including chimeric antigen receptor T cell and immune checkpoint inhibitors (ICIs) have been successfully developed to treat various cancers by motivating the adaptive anti-tumor immunity. Particularly, the checkpoint blockade approach has achieved great clinic success as evidenced by several U.S. Food and Drug Administration (FDA)-approved antiprogrammed death receptor 1/ligand 1 or anti-cytotoxic T lymphocyte associated protein 4 antibodies. However, the majority of cancers have low clinical response rates to these ICIs due to poor tumor immunogenicity. Indeed, the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes-TANK-binding kinase 1 (cGAS-STING-TBK1) axis is now appreciated as the major signaling pathway in innate immune response across different species. Aberrant signaling of this pathway has been closely linked to multiple diseases, including auto-inflammation, virus infection and cancers. In this perspective, we provide an updated review on the latest progress on the development of small molecule modulators targeting the cGAS-STING-TBK1 signaling pathway and their preclinical and clinical use as a new immune stimulatory therapy. Meanwhile, highlights on the clinical candidates, limitations and challenges, as well as future directions in this field are also discussed. Further, small molecule inhibitors targeting this signaling axis and their potential therapeutic use for various indications are discussed as well.
Key words:    Immunotherapy    Anti-tumor;cGAS    STING    TBK1    Small molecule modulators   
Received: 2019-12-04     Revised: 2020-02-20
DOI: 10.1016/j.apsb.2020.03.001
Funds: This work was supported by grants from Natural Science Foundation of China (Nos. 81773565, 21877120, 81703327, 81430080, 81573452, and 81773767, China). Supporting grants from the Key Program of the Frontier Science of the Chinese Academy of Sciences (No. 160621, China), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA12020374, China), and a start-up grant to the Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery from Shanghai Jiao Tong University (China) are also appreciated.
Corresponding author: Ao Zhang,
Author description:
PDF(KB) Free
Chunyong Ding
Zilan Song
Ancheng Shen
Tingting Chen
Ao Zhang

1. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140:805-20.
2. Lesterhuis WJ, Haanen JB, Punt CJ. Cancer immunotherapydrevisited. Nat Rev Drug Discov 2011;10:591-600.
3. Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation. Cell 2011;144:646-74.
4. Li Z, Song W, Rubinstein M, Liu D. Recent updates in cancer immunotherapy:a comprehensive review and perspective of the 2018 China Cancer Immunotherapy Workshop in Beijing. J Hematol Oncol 2018;11:142-56.
5. Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, et al. Advances in cancer immunotherapy 2019dlatest trends. J Exp Clin Cancer Res 2019;38:268-78.
6. Sondak VK, Smalley KS, Kudchadkar R, Grippon S, Kirkpatrick P. Ipilimumab. Nat Rev Drug Discov 2011;10:411-2.
7. Tan M, Quintal L. Pembrolizumab:a novel antiprogrammed death 1 (PD-1) monoclonal antibody for treatment of metastatic melanoma. J Clin Pharm Ther 2015;40:504-7.
8. Mashima E, Inoue A, Sakuragi Y, Yamaguchi T, Sasaki N, Hara Y, et al. Nivolumab in the treatment of malignant melanoma:review of the literature. OncoTargets Ther 2015;8:2045-51.
9. Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov 2015; 14:603-22.
10. Dhanak D, Edwards JP, Nguyen A, Tummino PJ. Small-molecule targets in immuno-oncology. Cell Chem Biol 2017;24:1148-60.
11. Huck BR, Kötzner L, Urbahns K. Small molecules drive big improvements in immuno-oncology therapies. Angew Chem Int Ed 2018;57:4412-28.
12. Cheng B, Yuan WE, Su J, Liu Y, Chen J. Recent advances in small molecule based cancer immunotherapy. Eur J Med Chem 2018;157:582-98.
13. Weinmann H. Cancer immunotherapy:selected targets and smallmolecule modulators. ChemMedChem 2016;11:450-66.
14. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy:a comprehensive review of registration trials and future considerations. J Immunother Cancer 2018;6:8-25.
15. Tang J, Yu JX, Hubbard-Lucey VM, Neftelinov ST, Hodge JP, Lin Y. Trial watch:the clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nat Rev Drug Discov 2018;17:854-5.
16. Chen S, Song Z, Zhang A. Small-molecule immuno-oncology therapy:advances, challenges and new directions. Curr Top Med Chem 2019;19:180-5.
17. Fritz JM, Lenardo MJ. Development of immune checkpoint therapy for cancer. J Exp Med 2019;216:1244-54.
18. Zhang H, Chen J. Current status and future directions of cancer immunotherapy. J Cancer 2018;9:1773-81.
19. Mazzarella L, Duso BA, Trapani D, Belli C, D'Amico P, Ferraro E, et al. The evolving landscape of ‘next-generation’ immune checkpoint inhibitors:a review. Eur J Cancer 2019;117:14-31.
20. Torphy RJ, Schulick RD, Zhu Y. Newly emerging immune checkpoints:promises for future cancer therapy. Int J Mol Sci 2017;18:2642.
21. Dempke WC, Fenchel K, Uciechowski P, Dale SP. Second-and thirdgeneration drugs for immuno-oncology treatmentdthe more the better?. Eur J Cancer 2017;74:55-72.
22. Wolchok J. Putting the immunologic brakes on cancer. Cell 2018; 175:1452-4.
23. van der Woude LL, Gorris MA, Halilovic A, Figdor CG, de Vries IJM. Migrating into the tumor:a roadmap for T cells. Trends Cancer 2017;3:797-808.
24. Mayes PA, Hance KW, Hoos A. The promise and challenges of immune agonist antibody development in cancer. Nat Rev Drug Discov 2018;17:509-27.
25. Li A, Yi M, Qin S, Song Y, Chu Q, Wu K. Activating cGASeSTING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol 2019;12:35-46.
26. Corrales L, McWhirter SM, Dubensky Jr TW, Gajewski TF. The host STING pathway at the interface of cancer and immunity. J Clin Invest 2016;126:2404-11.
27. Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol 2013;14:19-26.
28. Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNAmediated, type I interferon-dependent innate immunity. Nature 2009; 461:788-93.
29. Barber GN. STING-dependent cytosolic DNA sensing pathways. Trends Immunol 2014;35:88-93.
30. Barber GN. STING:infection, inflammation and cancer. Nat Rev Immunol 2015;15:760-70.
31. Vargas TR, Benoit-Lizon I, Apetoh L. Rationale for stimulator of interferon genes-targeted cancer immunotherapy. Eur J Cancer 2017; 75:86-97.
32. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMPeAMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013;339:786-91.
33. Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGASSTING pathway in health and disease. Nat Rev Genet 2019;20:657-74.
34. Ablasser A, Chen ZJ. cGAS in action:expanding roles in immunity and inflammation. Science 2019;363:eaat8657.
35. Bai J, Liu F. The cGAS-cGAMP-STING Pathway:a molecular link between immunity and metabolism. Diabetes 2019;68:1099-108.
36. Kato K, Omura H, Ishitani R, Nureki O. Cyclic GMPeAMP as an endogenous second messenger in innate immune signaling by cytosolic DNA. Annu Rev Biochem 2017;86:541-66.
37. Andreeva L, Hiller B, Kostrewa D, Lässig C, de Oliveira Mann CC, Jan Drexler D, et al. cGAS senses long and HMGB/TFAM-bound Uturn DNA by forming protein-DNA ladders. Nature 2017;549:394-8.
38. Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, et al. Cyclic[G (2',5') pA (3',5') p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 2013; 153:1094-107.
39. Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 2013;498:332-7.
40. Patel S, Jin L. TMEM173 variants and potential importance to human biology and disease. Genes Immun 2019;20:82-9.
41. Shang G, Zhu D, Li N, Zhang J, Zhu C, Lu D. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat Struct Mol Biol 2012;19:725-7.
42. Shang G, Zhang C, Chen ZJ, Bai X, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 2019;567:389-93.
43. Ergun SL, Fernandez D, Weiss TM, Li L. STING Polymer structure reveals mechanisms for activation, hyperactivation, and inhibition. Cell 2019;178:290-301.
44. Li J, Li J, Miyahira A, Sun J, Liu Y, Cheng G, et al. Crystal structure of the ubiquitin-like domain of human TBK1. Protein Cell 2012;3:383-91.
45. Larabi A, Devos JM, Ng SL, Nanao MH, Round A, Maniatis T, et al. Crystal structure and mechanism of activation of TANK-binding kinase 1. Cell Rep 2013;3:734-46.
46. Zhao C, Zhao W. TANK-binding kinase 1 as a novel therapeutic target for viral diseases. Expert Opin Ther Targets 2019;23:437-46.
47. Zhang C, Shang G, Gui X, Zhang X, Bai XC, Chen ZJ. Structural basis of STING binding with and phosphorylation by TBK1. Nature 2019;567:394-414.
48. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell SL, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature 2019;569:718-39.
49. Gajewski TF. The next hurdle in cancer immunotherapy:overcoming the non-T-cell-inflamed tumor microenvironment. Semin Oncol 2015;42:663-71.
50. Kerr WG, Chisholm JD. The Next Generation of immunotherapy for cancer:small molecules could make big waves. J Immunol 2019;202:11-9.
51. Cui X, Zhang R, Cen S, Zhou J. STING modulators:predictive significance in drug discovery. Eur J Med Chem 2019;182:111591-605.
52. Berger G, Marloye M, Lawler SE. Pharmacological modulation of the STING pathway for cancer immunotherapy. Trends Mol Med 2019;25:412-27.
53. Zhang X, Shi H, Wu J, Zhang X, Sun L, Chen C, et al. Cyclic GMPAMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 2013;51:226-35.
54. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STINGdependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent anti-tumor immunity in immunogenic tumors. Immunity 2014;41:843-52.
55. Li T, Cheng H, Yuan H, Xu Q, Shu C, Zhang Y, et al. Anti-tumor activity of cGAMP via stimulation of cGAS-cGAMP-STING-IRF3 mediated innate immune response. Sci Rep 2016;6:19049-62.
56. Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 2015;11:1018-30.
57. Lioux T, Mauny MA, Lamoureux A, Bascoul N, Hays M, Vernejoul F, et al. Design, synthesis, and biological evaluation of novel cyclic adenosineeinosine monophosphate (cAIMP) analogs that activate stimulator of interferon genes (STING). J Med Chem 2016;59:10253-67.
58. Dialer CR, Stazzoni S, Drexler DJ, Muller FM, Veth S, Pichler A, et al. A click-chemistry linked 20,30-cGAMP analogue. Chem Eur J 2019;25:2089-95.
59. Prantner D, Perkins DJ, Lai W, Williams MS, Sharma S, Fitzgerald K, et al. 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) activates stimulator of interferon gene (STING)-dependent innate immune pathways and is regulated by mitochondrial membrane potential. J Biol Chem 2012;287:39776-88.
60. Gao P, Ascano M, Zillinger T, Wang W, Dai P, Serganov AA, et al. Structure-function analysis of STING activation by c[G (2',5') pA (3',5') p] and targeting by antiviral DMXAA. Cell 2013;154:748-62.
61. Gao P, Zillinger T, Wang W, Ascano M, Dai P, Hartmann G, et al. Binding-pocket and lid-region substitutions render human STING sensitive to the species-specific drug DMXAA. Cell Rep 2014;8:1668-76.
62. Hwang J, Kang T, Lee J, Choi BS, Han S. Design, synthesis, and biological evaluation of C7-functionalized DMXAA derivatives as potential human-STING agonists. Org Biomol Chem 2019;17:1869-74.
63. Cavlar T, Deimling T, Ablasser A, Hopfner KP, Hornung V, et al. Species-specific detection of the antiviral small molecule compound CMA by STING. EMBO J 2013;32:1440-50.
64. Liu B, Tang L, Zhang X, Ma J, Sehgal M, Cheng J, et al. A cell-based high throughput screening assay for the discovery of cGASeSTING pathway agonists. Antivir Res 2017;147:37-46.
65. Sali TM, Pryke KM, Abraham J, Liu A, Archer I, Broeckel R, et al. Characterization of a novel human-specific STING agonist that elicits antiviral activity against emerging alphaviruses. PLoS Pathog 2015;11:e1005324.
66. Zhang Y, Sun Z, Pei J, Luo Q, Zeng X, Li Q, et al. Identification of amangostin as an agonist of human STING. ChemMedChem 2018;13:2057-64.
67. Zhang X, Liu B, Tang L, Su Q, Hwang N, Sehgal M, et al. Discovery and mechanistic study of a novel human-stimulator-of-interferongenes agonist. ACS Infect Dis 2019;5:1139-49.
68. Ramanjulu JM, Pesiridis GS, Yang J, Concha N, Singhaus R, Zhang S, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 2018;564:439-54.
69. Li J, Zhang D, Wei Y, Pan F, Ma R, Li Y, et al., inventors; GlaxoSmithKline, assignee. Immunomodulator. PCT Int Appl. WO 2019134705 A1. July 11, 2019. p. 1-87.
70. Banerjee M, Middya S, Basu S, Ghosh R, Pryde D, Yadav D, et al., inventors. Curde Pharm, assignee. Small molecule modulators of human STING. PCT Int Appl. WO 2018234805 A1. Dec 27, 2018. p. 1-234.
71. Banerjee M, Middya S, Basu S, Ghosh R, Pryde D, Yadav D, et al., inventors. Curde Pharm, assignee. Small molecule modulators of human STING. PCT Int Appl. WO 2018234808 A1. Dec 27, 2018. p. 1-283.
72. Banerjee M, Middya S, Basu S, Yadav D, Ghosh R, Pryde D, et al., inventors. Curde Pharm, assignee. Heterocyclic small molecule modulators of human STING. PCT Int Appl. WO 2018234807 A1. Dec 27, 2018. p. 1-176.
73. Altman MD, Cash BD, Chang W, Cumming JN, Haidle AM, Henderson TJ, et al., inventors. Merck Sharp & Dohme Corp., assignee. Benzo[b]thiophene compounds as STING agonists. PCT Int Appl. WO 2018067423 A1. Apr 12, 2018. p. 1-185.
74. Cemerski S, Cumming JN, Kopinja JE, Perera SA, Trotter BW, Tse ANC, inventors. Merck, assignee. Benzo[b]thiophene STING agonists for cancer treatment. PCT Int Appl. WO 2019027858 A1. Feb 07, 2019. p. 1-56.
75. Cemerski S, Cumming JN, Kopinja JE, Perera SA, Trotter BW, Tse ANC, inventors. Merck Sharp & Dohme Corp., assignee. Combinations of PD-1 antagonists and benzo[b]thiophene STING agonists for cancer treatment. PCT Int Appl. WO 2019027857 A1. Feb 07, 2019. p. 1-73.
76. Siu T, Altman MD, Baltus GA, Childers M, Ellis JM, Gunaydin H, et al. Discovery of a novel cGAMP competitive ligand of the inactive form of STING. ACS Med Chem Lett 2018;10:92-7.
77. Haag SM, Gulen MF, Reymond L, Gibelin A, Abrami L, Decout A, et al. Targeting STING with covalent small molecule inhibitors. Nature 2018;559:269-90.
78. Li S, Hong Z, Wang Z, et al. The cyclopeptide astin C specifically inhibits the innate immune CDN sensor STING. Cell Rep 2018;25:3405-21.
79. Bose D, Su Y, Marcus A, Li F, Mei J, Huang L, et al. An RNA-based fluorescent biosensor for high-throughput analysis of the cGASeGAMPeSTING pathway. Cell Chem Biol 2016;23:1539-49.
80. An J, Woodward JJ, Sasaki T, Raulet DH, Hammond MC. Cutting edge:antimalarial drugs inhibit IFN-b production through blockade of cyclic GMP-AMP synthase-DNA interaction. J Immunol 2015; 194:4089-93.
81. An J, Woodward JJ, Lai W, Minie M, Sun X, Tanaka L, et al. Inhibition of cyclic GMP-AMP synthase using a novel antimalarial drug derivative in Trex1-deficient mice. Arthritis Rheumatol 2018;70:1807-19.
82. Wang M, Sooreshjani MA, Mikek C, Opoku-Temeng C, Sintim HO. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-b levels. Future Med Chem 2018;10:1301-17.
83. Vincent J, Adura C, Gao P, Luz A, Lama L, Asano Y, et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nat Commun 2017;8:750-62.
84. Lama L, Adura C, Xie W, Tomita D, Kamei T, Kuryavyi V, et al. Development of human cGAS-specific small molecule inhibitors for repression of dsDNA-triggered interferon expression. Nat Commun 2019;10:2261-74.
85. Hall J, Brault A, Vincent F, Weng S, Wang H, Dumlao D, et al. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay. PLoS One 2017; 12:e0184843.
86. Ndubaku CO, Katibah GE, Roberts TC, Sung L, Ciblat S, Raeppel F, et al., inventors. Aduro Biotech, assignee. Pyrazolopyrimidinone compounds and uses thereof. PCT Int Appl. WO 2019055750 A1. Mar 21, 2019. p. 1-359.
87. Yu T, Yang Y, Yin DQ, Hong S, Son YJ, Kim JH, et al. TBK1 inhibitors:a review of patent literature (2011-2014). Expert Opin Ther Pat 2015;25:1385-96.
88. Clark K, Plater L, Peggie M, Cohen P. Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkB kinase ε:a distinct upstream kinase mediates Ser-172 phosphorylation and activation. J Biol Chem 2009;284:14136-46.
89. Clark K, Takeuchi O, Akira S, Cohen P. The TRAF-associated protein TANK facilitates cross-talk within the IkB kinase family during Toll-like receptor signaling. Proc Natl Acad Sci U S A 2011;108:17093-8.
90. Lee SJ, Gharbi A, You JS, Han HD, Kang TH, Hong SH, et al. Drug repositioning of TANK-binding kinase 1 inhibitor CYT387 as an alternative for the treatment of Gram-negative bacterial sepsis. Int Immunopharmacol 2019;73:482-90.
91. Perrior TR, Newton GK, Stewart MR, Aqil R, inventors. Domainex Limited, assignee. Pyrimidine compounds as inhibitors of protein kinases IKK epsilon and/or TBK-1, processes for their preparation, and pharmaceutical compositions containing them. PCT Int Appl. WO 2012010826 A1. Jan 26, 2012. p. 1-65.
92. Li J, Huang J, Jeong JH, Park SJ, Wei R, Peng J, et al. Selective TBK1/IKKi dual inhibitors with anticancer potency. Int J Cancer 2014;134:1972-80.
93. Richters A, Basu D, Engel J, Ercanoglu MS, Balke-Want H, Tesch R, et al. Identification and further development of potent TBK1 inhibitors. ACS Chem Biol 2014;10:289-98.
94. Beyett TS, Gan X, Reilly SM, Chang L, Gomez AV, Saltiel AR, et al. Carboxylic acid derivatives of amlexanox display enhanced potency toward TBK1 and IKKε and reveal mechanisms for selective inhibition. Mol Pharmacol 2018;94:1210-9.
95. Beyett TS, Gan X, Reilly SM, Gomez AV, Chang L, Tesmer JJG, et al. Design, synthesis, and biological activity of substituted 2-amino-5-oxo-5H-chromeno[2,3-b]pyridine-3-carboxylic acid derivatives as inhibitors of the inflammatory kinases TBK1 and IKKε for the treatment of obesity. Bioorg Med Chem 2018;26:5443-6.
96. Thomson DW, Poeckel D, Zinn N, Rau C, Strohmer K, Wagner AJ, et al. Discovery of GSK8612, a highly selective and potent TBK1 inhibitor. ACS Med Chem Lett 2019;10:780-5.
97. Crew AP, Raina K, Dong H, Qian Y, Wang J, Vigil D, et al. Identification and characterization of Von Hippel-Lindau-recruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1. J Med Chem 2017;61:583-98.
98. Kato K, Nishimasu H, Okudaira S, Mihara E, Ishitani R, Takagi J, et al. Crystal structure of Enpp1, an extracellular glycoprotein involved in bone mineralization and insulin signaling. Proc Natl Acad Sci U S A 2012;109:16876-81.
99. Li L, Yin Q, Kuss P, Maliga Z, Millan JL, Wu H, et al. Hydrolysis of 2',3'-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat Chem Biol 2014;10:1043-52.
100. Kato K, Nishimasu H, Oikawa D, Hirano S, Hirano H, Kasuya G, et al. Structural insights into cGAMP degradation by ecto-nucleotide pyrophosphatase phosphodiesterase 1. Nat Commun 2018;9:4424-31.
101. Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer:an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol 2018;62:29-39.
102. Salama AK, Moschos SJ. Next steps in immuno-oncology:enhancing anti-tumor effects through appropriate patient selection and rationally designed combination strategies. Ann Oncol 2016;28:57-74.
103. Darvin P, Toor SM, Nair VS, Elkord E. Immune checkpoint inhibitors:recent progress and potential biomarkers. Exp Mol Med 2018;50:1-11.
104. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T, et al. The immune landscape of cancer. Immunity 2018;48:812-30.
105. O'Donovan DH, Mao Y, Mele DA. The next generation of pattern recognition receptor agonists:improving response rates in cancer immunotherapy. Curr Med Chem 2019;26:1-19.
106. Chen DS, Mellman I. Elements of cancer immunity and the cancerimmune set point. Nature 2017;541:321-30.
107. Sheridan C. Drug developers switch gears to inhibit STING. Nat Biotechnol 2019;37:199-201.
108. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008;455:674-6.
109. Ng KW, Marshall EA, Bell JC, Lam WL. cGASeSTING and cancer:dichotomous roles in tumor immunity and development. Trends Immunol 2018;39:44-54.
110. Fu Y, Lin Q, Zhang Z, Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B 2020;10:414-33.
Similar articles: