Original articles
Zhuo Luo, Xiu-Ping Kuang, Qing-Qing Zhou, Chang-Yu Yan, Wen Li, Hai-Biao Gong, Hiroshi Kurihara, Wei-Xi Li, Yi-Fang Li, Rong-Rong He. Inhibitory effects of baicalein against herpes simplex virus type 1[J]. Acta Pharmaceutica Sinica B, 2020, 10(12): 2323-2338

Inhibitory effects of baicalein against herpes simplex virus type 1
Zhuo Luoa,b,c, Xiu-Ping Kuanga,b,c,d, Qing-Qing Zhoua,b,c, Chang-Yu Yana,b,c, Wen Lia,b,c, Hai-Biao Gonga,b,c, Hiroshi Kuriharaa,b,c, Wei-Xi Lid, Yi-Fang Lia,b,c, Rong-Rong Hea,b,c
a Guangdong Engineering Research Center of Chinese Medicine&Disease Susceptibility, College of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 612505, China;
b International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education(MOE), College of Pharmacy, Jinan University, Guangzhou 612505, China;
c Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 612505, China;
d Yunnan University of Traditional Chinese Medicine, Kunming 650550, China
Abstract:
Herpes simplex virus type 1 (HSV-1) is a ubiquitous and widespread human pathogen, which gives rise to a range of diseases, including cold sores, corneal blindness, and encephalitis. Currently, the use of nucleoside analogs, such as acyclovir and penciclovir, in treating HSV-1 infection often presents limitation due to their side effects and low efficacy for drug-resistance strains. Therefore, new anti-herpetic drugs and strategies should be urgently developed. Here, we reported that baicalein, a naturally derived compound widely used in Asian countries, strongly inhibited HSV-1 replication in several models. Baicalein was effective against the replication of both HSV-1/F and HSV-1/Blue (an acyclovir-resistant strain) in vitro. In the ocular inoculation mice model, baicalein markedly reduced in vivo HSV-1/F replication, receded inflammatory storm and attenuated histological changes in the cornea. Consistently, baicalein was found to reduce the mortality of mice, viral loads both in nose and trigeminal ganglia in HSV-1 intranasal infection model. Moreover, an ex vivo HSV-1-EGFP infection model established in isolated murine epidermal sheets confirmed that baicalein suppressed HSV-1 replication. Further investigations unraveled that dual mechanisms, inactivating viral particles and inhibiting IkB kinase beta (IKK-β) phosphorylation, were involved in the anti-HSV-1 effect of baicalein. Collectively, our findings identified baicalein as a promising therapy candidate against the infection of HSV-1, especially acyclovir-resistant strain.
Key words:    Anti-HSV-1    Baicalein    Viral inactivation    IKK-β phosphorylation    NF-кB activation    HSV-1 infection   
Received: 2020-03-05     Revised: 2020-04-10
DOI: 10.1016/j.apsb.2020.06.008
Funds: This study was partly supported by National Natural Science Foundation of China (Grant Nos. U1801284, 81573675, 81622050, 81873209 and 81673709), National Key Research and Development Program of China (Grant No. 2017YFC1700404), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (Grant No. 2017BT01Y036, China) and GDUPS (2019, China), the Guangdong Science and Technology Foundation (Grant No. 2017A030306004), the Program of Hong Kong Scholar (XJ2016017, China), Science and Technology Program of Guangzhou (Grant No. 201903010062, China), the Youth Top-notch Talent Support Program of Guangdong Province (Grant No. 2016TQ03R586, China).
Corresponding author: Wei-Xi Li, liweixi1001@163.com;Yi-Fang Li, liyifang706@jnu.edu.cn;Rong-Rong He, rongronghe@jnu.edu.cn     Email:liweixi1001@163.com;liyifang706@jnu.edu.cn;rongronghe@jnu.edu.cn
Author description:
Service
PDF(KB) Free
Print
0
Authors
Zhuo Luo
Xiu-Ping Kuang
Qing-Qing Zhou
Chang-Yu Yan
Wen Li
Hai-Biao Gong
Hiroshi Kurihara
Wei-Xi Li
Yi-Fang Li
Rong-Rong He

References:
1. Looker KJ, Garnett GP. A systematic review of the epidemiology and interaction of herpes simplex virus types 1 and 2. Sex Transm Infect 2005;81:103-7.
2. Suzich JB, Cliffe AR. Strength in diversity:understanding the pathways to herpes simplex virus reactivation. Virology 2018;522:81-91.
3. Kumar SP, Chandy ML, Shanavas M, Khan S, Suresh KV. Pathogenesis and life cycle of herpes simplex virus infection-stages of primary, latency and recurrence. J Oral Maxillofac Surg Med Pathol 2016;28:350-3.
4. Yan C, Luo Z, Li W, Li X, Dallmann R, Hiroshi Kurihara H, et al. Disturbed YineYang balance:stress increases the susceptibility to primary and recurrent infections of herpes simplex virus type 1. Acta Pharm Sin B 2020;10:383-98.
5. Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis:an epidemiologic update. Surv Ophthalmol 2012;57:448-62.
6. Khadr L, Harfouche M, Omori R, Schwarzer G, Chemaitelly H, AbuRaddad LJ. The epidemiology of herpes simplex virus type 1 in Asia:systematic review, meta-analyses, and meta-regressions. Clin Infect Dis 2018;68:757-72.
7. De-Clercq E. Antivirals:past, present and future. Biochem Pharmacol 2013;85:727-44.
8. De-Clercq E. A 40-year journey in search of selective antiviral chemotherapy. Annu Rev Pharmacol Toxicol 2011;51:1-24.
9. Piret J, Boivin G. Resistance of herpes simplex viruses to nucleoside analogues:mechanisms, prevalence, and management. Antimicrob Agents Chemother 2011;55:459-72.
10. Di-Sotto A, Di-Giacomo S, Amatore D, Locatelli M, Vitalone A, Toniolo C, et al. A polyphenol rich extract from Solanum melongena L. DR2 peel exhibits antioxidant properties and anti-herpes simplex virus type 1 activity in vitro. Molecules 2018;23:2066.
11. Mifsud EJ, Hayden FG, Hurt AC. Antivirals targeting the polymerase complex of influenza viruses. Antivir Res 2019;169:104545.
12. Zhao Q, Chen XY, Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull (Beijing) 2016; 61:1391-8.
13. Li-Weber M. New therapeutic aspects of flavones:the anti-cancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin. Cancer Treat Rev 2009;35:57-68.
14. Zhang XJ, Liu S, Xing JP, Liu ZQ, Song FR. Effect of type 2 diabetes mellitus on flavonoid pharmacokinetics and tissue distribution after oral administration of Radix Scutellaria extract in rats. Chin J Nat Med 2018;16:418-27.
15. Chen B, Luo M, Liang J, Zhang C, Gao CF, Wang J, et al. Surface modification of PGP for a neutrophil-nanoparticle co-vehicle to enhance the anti-depressant effect of baicalein. Acta Pharm Sin B 2018;8:64-73.
16. Yan WJ, Ma XC, Gao XY, Xue XH, Zhang SQ. Latest research progress in the correlation between baicalein and breast cancer invasion and metastasis. Mol Clin Oncol 2016;4:472-6.
17. Xie Y, Song X, Sun X, Huang J, Zhong M, Lotze MT, et al. Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem Biophys Res Commun 2016;473:775-80.
18. Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis:a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017;171:273-85.
19. Li Q, Li QQ, Jia JN, Sun QY, Zhou HH, Jin WL, et al. Baicalein exerts neuroprotective effects in FeCl3-induced post-traumatic epileptic seizures via suppressing ferroptosis. Front Pharmacol 2019;10:638.
20. Oo A, Teoh BT, Sam SS, Bakar SA, Zandi K. Baicalein and baicalin as Zika virus inhibitors. Arch Virol 2019;164:585-93.
21. Moghaddam E, Teoh BT, Sam SS, Lani R, Hassandarvish P, Chik Z, et al. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci Rep 2014;4:5452.
22. Oo A, Rausalu K, Merits A, Higgs S, Vanlandingham D, Bakar SA, et al. Deciphering the potential of baicalin as an antiviral agent for Chikungunya virus infection. Antivir Res 2018;150:101-11.
23. Jin J, Chen Y, Wang D, Ma L, Guo M, Zhou C, et al. The inhibitory effect of sodium baicalin on oseltamivir-resistant influenza A virus via reduction of neuraminidase activity. Arch Pharm Res 2018;41:664-76.
24. Benboudjema L, Mulvey M, Gao Y, Pimplikar SW, Mohr I. Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides. J Virol 2003;77:9192-203.
25. Morris J, Stuart PM, Rogge M, Potter C, Gupta N, Yin XT. Recurrent herpetic stromal keratitis in mice, a model for studying human HSK. J Vis Exp 2012;70:e4276.
26. Rahn E, Thier K, Petermann P, Knebel-Mörsdorf D. Ex vivo infection of murine epidermis with herpes simplex virus type 1. J Vis Exp 2015; 102:e53046.
27. Reinert LS, Lopu sná K, Winther H, Sun C, Thomsen MK, Nandakumar R, et al. Sensing of HSV-1 by the cGASeSTING pathway in microglia orchestrates antiviral defence in the CNS. Nat Commun 2016;7:13348.
28. De-Mello CPP, Bloom DC, Paixão IC. Herpes simplex virus type-1:replication, latency, reactivation and its antiviral targets. Antivir Ther 2016;21:277-86.
29. Lin LT, Chen TY, Chung CY, Noyce RS, Grindley TB, McCormick C, et al. Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoproteineglycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J Virol 2011;85:4386-98.
30. Lin LT, Chen TY, Lin SC, Chung CY, Lin TC, Wang GH, et al. Broadspectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry.BMCMicrobiol 2013;13:187.
31. Gonzalez-Dosal R, Horan KA, Rahbek SH, Ichijo H, Chen ZJ, Mieyal JJ, et al. HSV infection induces production of ROS, which potentiate signaling from pattern recognition receptors:role for Sglutathionylation of TRAF3 and 6. PLoS Pathog 2011;7:e1002250.
32. Li Z, Xu X, Leng X, He M, Wang J, Cheng S, et al. Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections. Arch Virol 2017;162:603-10.
33. To EE, Vlahos R, Luong R, Halls ML, Reading PC, King PT, et al. Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy. Nat Commun 2017;8:69.
34. Shieh DE, Liu LT, Lin CC. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res 2000;20:2861-5.
35. Tian Y, Li X, Xie H, Wang X, Xie Y, Chen C, et al. Protective mechanism of the antioxidant baicalein toward hydroxyl radicaltreated bone marrow-derived mesenchymal stem cells. Molecules 2018;23:223.
36. Kang KA, Zhang R, Piao MJ, Chae S, Kim HS, Park JH, et al. Baicalein inhibits oxidative stress-induced cellular damage via antioxidant effects. Toxicol Ind Health 2012;28:412-21.
37. Santoro MG, Rossi A, Amici C. NF-кB and virus infection:who controls whom. EMBO J 2003;22:2552-60.
38. Amici C, Rossi A, Costanzo A, Ciafrè S, Marinari B, Balsamo M, et al. Herpes simplex virus disrupts NF-кB regulation by blocking its recruitment on the IkBa promoter and directing the factor on viral genes. J Biol Chem 2006;281:7110-7.
39. Amaya M, Keck F, Bailey C, Narayanan A. The role of the IKK complex in viral infections. Pathog Dis 2014;72:32-44.
40. Amici C, Belardo G, Rossi A, Santoro MG. Activation of I kappa b kinase by herpes simplex virus type 1. A novel target for anti-herpetic therapy. J Biol Chem 2001;276:28759-66.
41. Shivkumar M, Milho R, May JS, Nicoll MP, Efstathiou S, Stevenson PG. Herpes simplex virus 1 targets the murine olfactory neuroepithelium for host entry. J Virol 2013;87:10477-88.
42. Jiang YC, Feng H, Lin YC, Guo XR. New strategies against drug resistance to herpes simplex virus. Int J Oral Sci 2016;8:1-6.
43. Lyu SY, Rhim JY, Park WB. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch Pharm Res 2005;28:1293-301.
44. Seo MB, Lee SK, Jeon YJ, Im JS. Inhibition of p65 nuclear translocation by baicalein. Toxicol Res 2011;27:71-6.
45. Li J, Ma J, Wang KS, Mi C, Wang Z, Piao LX, et al. Baicalein inhibits TNF-a-induced NF-кB activation and expression of NF-кB-regulated target gene products. Oncol Rep 2016;36:2771-6.
46. Hiscott J, Kwon H, Génin P. Hostile takeovers:viral appropriation of the NF-кB pathway. J Clin Invest 2001;107:143-51.
47. Zhao J, He S, Minassian A, Li J, Feng P. Recent advances on viral manipulation of NF-кB signaling pathway. Curr Opin Virol 2015;15:103-11.
48. Qiu M, Chen Y, Chu Y, Song S, Yang N, Gao J, et al. Zinc ionophores pyrithione inhibits herpes simplex virus replication through interfering with proteasome function and NF-кB activation. Antivir Res 2013;100:44-53.
49. Chen X, Wang Z, Yang Z, Wang J, Xu Y, Tan R, et al. Houttuynia cordata blocks HSV infection through inhibition of NF-кB activation. Antivir Res 2011;92:341-5.
50. Kutluay SB, Doroghazi J, Roemer ME, Triezenberg SJ. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology 2008;373:239-47.
51. Sala E, Guasch L, Iwaszkiewicz J, Mulero M, Salvadó MJ, Bladé C, et al. Identification of human IKK-2 inhibitors of natural origin (part II):in silico prediction of IKK-2 inhibitors in natural extracts with known antiinflammatory activity. Eur J Med Chem 2011;46:6098-103.
52. Chen D, Su A, Fu Y, Wang X, Lv X, Xu W, et al. Harmine blocks herpes simplex virus infection through downregulating cellular NF-кB and MAPK pathways induced by oxidative stress. Antivir Res 2015; 123:27-38.
53. Li M, Shi A, Pang H, Xue W, Li Y, Cao G, et al. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J Ethnopharmacol 2014;156:210-5.
Similar articles: