Original articles
Yuncong Yangy, Sirui Zhangy, Qian Zhouy, Chen Zhang, Yuqi Gao, Hao Wang, Zhe Li, Deyan Wu, Yinuo Wu, Yi-You Huang, Lei Guo, Hai-Bin Luo. Discovery of highly selective and orally available benzimidazole-based phosphodiesterase 10 inhibitors with improved solubility and pharmacokinetic properties for treatment of pulmonary arterial hypertension[J]. Acta Pharmaceutica Sinica B, 2020, 10(12): 2339-2347

Discovery of highly selective and orally available benzimidazole-based phosphodiesterase 10 inhibitors with improved solubility and pharmacokinetic properties for treatment of pulmonary arterial hypertension
Yuncong Yangy, Sirui Zhangy, Qian Zhouy, Chen Zhang, Yuqi Gao, Hao Wang, Zhe Li, Deyan Wu, Yinuo Wu, Yi-You Huang, Lei Guo, Hai-Bin Luo
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
Optimization efforts were devoted to discover novel PDE10A inhibitors in order to improve solubility and pharmacokinetics properties for a long-term therapy against pulmonary arterial hypertension (PAH) starting from the previously synthesized inhibitor A. As a result, a potent and highly selective PDE10A inhibitor, 14·3HCl (half maximal inhibitory concentration, IC50 Z 2.8 nmol/L and >3500-fold selectivity) exhibiting desirable solubility and metabolic stability with a remarkable bioavailability of 50% was identified with the aid of efficient methods of binding free energy predictions. Animal PAH studies showed that the improvement offered by 14·3HCl [2.5 mg/kg, oral administration (p.o.)] was comparable to tadalafil (5.0 mg/kg, p.o.), verifying the feasibility of PDE10A inhibitors for the antiPAH treatment. The crystal structure of the PDE10A-14 complex illustrates their binding pattern, which provided a guideline for rational design of highly selective PDE10A inhibitors.
Key words:    Phosphodiesterase 10A    Inhibitor    Benzimidazole derivatives    Crystal structure    Metabolic stability    Bioavailability    Pulmonary arterial hypertension   
Received: 2019-12-02     Revised: 2020-03-23
DOI: 10.1016/j.apsb.2020.04.003
Funds: This work was supported by the National Natural Science Foundation of China (Nos. 21708052, 21877134, 81602955, and 81703341), Science Foundation of Guangzhou City (201904020023, China), Fundamental Research Funds for the Central Universities (Nos. 19ykpy126 and 19ykpy123, China), China Postdoctoral Science Foundation (Nos. 2019M663325 and 2019M663326), Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2016, China).
Corresponding author: Yi-You Huang, Lei Guo, Hai-Bin Luo, huangyy287@mail.sysu.edu.cn;guolei7@mail.sysu.edu.cn;luohb77@mail.sysu.edu.cn     Email:huangyy287@mail.sysu.edu.cn;guolei7@mail.sysu.edu.cn;luohb77@mail.sysu.edu.cn
Author description:
PDF(KB) Free
Yuncong Yangy
Sirui Zhangy
Qian Zhouy
Chen Zhang
Yuqi Gao
Hao Wang
Zhe Li
Deyan Wu
Yinuo Wu
Yi-You Huang
Lei Guo
Hai-Bin Luo

1. Xiong PY, Potus F, Chan W, Archer SL. Models and molecular mechanisms of world health organization group 2 to 4 pulmonary hypertension. Hypertension 2018;71:34-55.
2. Humbert M, Lau Edmund MT, Montani D, Jaïs X, Sitbon O, Simonneau G. Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation 2014;130:2189-208.
3. Benza RL, Miller DP, Barst RJ, Badesch DB, Frost AE, McGoon MD. An evaluation of long-term sur-vival from time of diagnosis in pulmonary arterial hypertension from the REVEAL registry. Chest 2012; 142:448-56.
4. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Survival in patients with idi-opathic, familial, and anorexigenassociated pulmonary arterial hypertension in the modern management era. Circulation 2010;122:156-63.
5. Benza RL, Park MH, Keogh A, Girgis RE. Management of pulmonary arterial hypertension with a focus on combination therapies. J Heart Lung Transplant 2007;26:437-46.
6. Gbekor E, Betheil S, Fawcett L, Mount N, Phillips S. Selectivity of sildenafil and other phosphodiester-ase type 5 (PDE5) inhibitors against all human phosphodiesterase families. Eur Urol Suppl 2002;1:63.
7. Mirone V, Fusco F, Rossi A, Sicuteri R, Montorsi F. Tadalafil and vardenafil vs sildenafil:a review of patient-preference studies. BJU Int 2009;103:1212-7.
8. Wang Z, Jiang X, Zhang X, Tian G, Yang R, Wu J, et al. Pharmacokinetics-driven optimization of 4(3H)-pyrimidinones as phosphodiesterase type 5 inhibitors leading to TPN171, a clinical candidate for the treatment of pulmonary arterial hypertension. J Med Chem 2019; 62:4979-90.
9. Tian X, Vroom C, Ghofrani HA, Weissmann N, Bieniek E, Grimminger F, et al. Phosphodiesterase 10A upregulation contributes to pulmonary vascular remodeling. PLoS One 2011;6:e18136.
10. Wang H, Liu Y, Hou J, Zheng M, Robinson H, Ke H. Structural insight into substrate specificity of phosphodiesterase 10. Proc Natl Acad Sci U S A 2007;104:5782-7.
11. Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 2010;59:367-74.
12. Geerts H, Spiros A, Roberts P. Phosphodiesterase 10 inhibitors in clinical development for CNS disor-ders. Expert Rev Neurother 2017; 17:553-60.
13. Hennenberg M, Schott M, Kan A, Keller P, Tamalunas A, Ciotkowska A, et al. Inhibition of adrenergic and non-adrenergic smooth muscle contraction in the human prostate by the phosphodiesterase 10-selective inhibitor TC-E 5005. Prostate 2016;76:1364-74.
14. Li N, Lee K, Xi Y, Zhu B, Gary BD, Ramírez-Alcántara V, et al. Phosphodiesterase 10A:a novel target for selective inhibition of colon tumor cell growth and b-catenin-dependent TCF transcriptional activity. Oncogene 2014;34:1499-509.
15. Zhu B, Lee K, Canzoneri J, Ramirez-Alcantara V, Sigler S, Gary B, et al. Abstract 4372:phos-phodiesterase 10A inhibition suppresses lung tumor cell growth by activating PKG to inhibit ras and Wnt signaling. Cancer Res 2015;75:4372.
16. Huang YY, Yu YF, Zhang C, Chen Y, Zhou Q, Li Z, et al. Validation of phosphodiesterase-10 as a novel target for pulmonary arterial hypertension via highly selective and subnanomolar inhibitors. J Med Chem 2019;62:3707-21.
17. Verhoest PR, Chapin DS, Corman M, Fonseca K, Harms JF, Hou X, et al. Discovery of a novel class of phosphodiesterase 10A inhibitors and identification of clinical candidate 2-[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethyl]-quinoline (PF-2545920) for the treatment of schizophrenia. J Med Chem 2009;52:5188-96.
18. Jansen C, Kooistra AJ, Kanev GK, Leurs R, de Esch Ijp, de Graaf C. PDEStrIAn:a phosphodiesterase structure and ligand interaction annotated database as a tool for structure-based drug design. J Med Chem 2016;59:7029-65.
19. Williams DH, Stephens E, O'Brien DP, Zhou M. Understanding noncovalent interactions:ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. Angew Chem Int Ed Engl 2004;43:6596-616.
20. Varma MVS, Obach RS, Rotter C, Miller HR, Chang G, Steyn SJ, et al. Physicochemical space for op-timum oral bioavailability:contribution of human intestinal absorption and first-pass elimination. J Med Chem 2010;53:1098-108.
21. Niu W, Guo L, Li Y, Shuang S, Dong C, Wong MS. Highly selective two-photon fluorescent probe for ratiometric sensing and imaging cysteine in mitochondria. Anal Chem 2016;88:1908-14.
22. Matharu DS, Flaherty DP, Simpson DS, Schroeder CE, Chung D, Yan D, et al. Optimization of potent and selective quinazolinediones:inhibitors of respiratory syncytial virus that block RNA-dependent RNA polymerase complex activity. J Med Chem 2014;57:10314-28.
23. Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 2010;53:2719-40.
24. Zhang Z, Tang W. Drug metabolism in drug discovery and development. Acta Pharm Sin B 2018;8:721-32.
25. Schermuly RT, Kreisselmeier KP, Ghofrani HA, Yilmaz H, Butrous G, Ermert L, et al. Chronic sildena-fil treatment inhibits monocrotalineinduced pulmonary hypertension in rats. Am J Respir Crit Care Med 2004;169:39-45.
26. Wu D, Zhang T, Chen Y, Huang Y, Geng H, Yu Y, et al. Discovery and optimization of chromeno[2,3-c]pyrrol-9(2H)-ones as novel selective and orally bioavailable phosphodiesterase 5 inhibitors for the treatment of pulmonary arterial hypertension. J Med Chem 2017;60:6622-37.
27. Wu XN, Huang YD, Li JX, Yu YF, Qian Z, Zhang C, et al. Structurebased design, synthesis, and biological evaluation of novel pyrimidinone derivatives as PDE9 inhibitors. Acta Pharm Sin B 2018;8:615-28.
28. Wu D, Huang Y, Chen Y, Huang YY, Geng H, Zhang T, et al. Optimization of chromeno[2,3-c]pyrrol-9(2H)-ones as highly potent, selective, and orally bioavailable PDE5 inhibitors:structureeactivity relationship, X-ray crystal structure, and pharmacodynamic effect on pulmonary arterial hypertension. J Med Chem 2018;61:8468-73.
Similar articles: