Original articles
Yang Gao, Jie Gao, Ganen Mu, Yumin Zhang, Fan Huang, Wenxue Zhang, Chunhua Ren, Cuihong Yang, Jianfeng Liu. Selectively enhancing radiosensitivity of cancer cells via in situ enzyme-instructed peptide selfassembly[J]. Acta Pharmaceutica Sinica B, 2020, 10(12): 2374-2383

Selectively enhancing radiosensitivity of cancer cells via in situ enzyme-instructed peptide selfassembly
Yang Gaoa, Jie Gaoa, Ganen Mua, Yumin Zhanga, Fan Huanga, Wenxue Zhangb, Chunhua Rena, Cuihong Yanga, Jianfeng Liua
a Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences&Peking Union Medical College, Tianjin 300192, China;
b Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin 300052, China
Abstract:
The radiotherapy modulators used in clinic have disadvantages of high toxicity and low selectivity. For the first time, we used the in situ enzyme-instructed self-assembly (EISA) of a peptide derivative (Nap-GDFDFpYSV) to selectively enhance the sensitivity of cancer cells with high alkaline phosphatase (ALP) expression to ionizing radiation (IR). Compared with the in vitro pre-assembled control formed by the same molecule, assemblies formed by in situ EISA in cells greatly sensitized the ALPhigh-expressing cancer cells to γ-rays, with a remarkable sensitizer enhancement ratio. Our results indicated that the enhancement was a result of fixing DNA damage, arresting cell cycles and inducing cell apoptosis. Interestingly, in vitro pre-formed assemblies mainly localized in the lysosomes after incubating with cells, while the assemblies formed via in situ EISA scattered in the cell cytosol. The accumulation of these molecules in cells could not be inhibited by endocytosis inhibitors. We believed that this molecule entered cancer cells by diffusion and then in situ self-assembled to form nanofibers under the catalysis of endogenous ALP. This study provides a successful example to utilize intracellular in situ EISA of small molecules to develop selective tumor radiosensitizers.
Key words:    In situ enzyme-instructed self-assembly (EISA)    Pre-assembly    Alkaline phosphatase (ALP)    Peptide    Cancer radiotherapy    Nanofiber    Histone deacetylases inhibitor (HDACI)    Radiosensitizer   
Received: 2020-03-25     Revised: 2020-05-20
DOI: 10.1016/j.apsb.2020.07.022
Funds: This work was supported by the National Natural Science Foundation of China (81971733, 31771085 and 81722026), the CAMS Innovation Fund for Medical Sciences (CIFMS, 2016-I2M-3e022, China), the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2018RC350016 and 2018PT35031, China) and the Science Foundation for Distinguished Young Scholars of Tianjin (18JCJQJC47300 and 19JCJQJC62200, China).
Corresponding author: Chunhua Ren, renchunhua@irm-cams.ac.cn;Cuihong Yang, yangcuihong@irm-cams.ac.cn;Jianfeng Liu, liujianfeng@irm-cams.ac.cn     Email:renchunhua@irm-cams.ac.cn;yangcuihong@irm-cams.ac.cn;liujianfeng@irm-cams.ac.cn
Author description:
Service
PDF(KB) Free
Print
0
Authors
Yang Gao
Jie Gao
Ganen Mu
Yumin Zhang
Fan Huang
Wenxue Zhang
Chunhua Ren
Cuihong Yang
Jianfeng Liu

References:
1. Citrin DE. Recent developments in radiotherapy. N Engl J Med 2017; 377:1065-75.
2. Chen L, Qian M, Jiang H, Zhou Y, Du Y, Yang Y, et al. Multifunctional mesoporous black phosphorus-based nanosheet for enhanced tumor-targeted combined therapy with biodegradation-mediated metastasis inhibition. Biomaterials 2020;236:119770.
3. Liu JN, Bu W, Shi J. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem Rev 2017;117:6160-224.
4. Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Canc Res 2018;37:87.
5. Camphausen K, Tofilon PJ. Inhibition of histone deacetylation:a strategy for tumor radiosensitization. J Clin Oncol 2007;25:4051-6.
6. Wang H, Mu X, He H, Zhang XD. Cancer radiosensitizers. Trends Pharmacol Sci 2018;39:24-48.
7. Yu CYY, Xu H, Ji S, Kwok RTK, Lam JWY, Li X, et al. Mitochondrion-anchoring photosensitizer with aggregation-induced emission characteristics synergistically boosts the radiosensitivity of cancer cells to ionizing radiation. Adv Mater 2017;29:1606167.
8. Wang Y, Liu J, Ma X, Liang XJ. Nanomaterial-assisted sensitization of oncotherapy. Nano Res 2018;11:2932-50.
9. Ni X, Zhang X, Duan X, Zheng HL, Xue XS, Ding D. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett 2019;19:318-30.
10. Zhang Y, Huang F, Ren C, Liu J, Yang L, Chen S, et al. Enhanced radiosensitization by gold nanoparticles with acid-triggered aggregation in cancer radiotherapy. Adv Sci 2019;6:1801806.
11. Tang W, Dong Z, Zhang R, Yi X, Yang K, Jin M, et al. Multifunctional two-dimensional coreeshell mxene@gold nanocomposites for enhanced photo-radio combined therapy in the second biological window. ACS Nano 2018;13:284-94.
12. Xie J, Gong L, Zhu S, Yong Y, Gu Z, Zhao Y. Emerging strategies of nanomaterial-mediated tumor radiosensitization. Adv Mater 2019;31:1802244.
13.[Internet] ClinicalTrials.gov. Bethesda (MD):U.S. National Library of Medicine; 2002-2020[cited 2020 Mar 22]. Available from:https://clinicaltrials.gov/ct2/results?condZradiotherapy&termZnanoparticle&cntry.
14. Moding EJ, Kastan MB, Kirsch DG. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov 2013;12:526-42.
15. Zhang C, Wu W, Li RQ, Qiu WX, Zhuang ZN, Cheng SX, et al. Peptide-based multifunctional nanomaterials for tumor imaging and therapy. Adv Funct Mater 2018;28:1804492.
16. Yang C, Li D, Liu Z, Hong G, Zhang J, Kong D, et al. Responsive small molecular hydrogels based on adamantane-peptides for cell culture. J Phys Chem B 2012;116:633-8.
17. Yang C, Chu L, Zhang Y, Shi Y, Liu J, Liu Q, et al. Dynamic biostability, biodistribution, and toxicity of L/D-peptide-based supramolecular nanofibers. ACS Appl Mater Interfaces 2015;7:2735-44.
18. Xu H, Wang T, Yang C, Li X, Liu G, Yang Z, et al. Supramolecular nanofibers of curcumin for highly amplified radiosensitization of colorectal cancers to ionizing radiation. Adv Funct Mater 2018;28:1707140.
19. Du W, Hu X, Wei W, Liang G. Intracellular peptide self-assembly:a biomimetic approach for in situ nanodrug preparation. Bioconjugate Chem 2018;29:826-37.
20. Zhou J, Xu B. Enzyme-instructed self-assembly:a multistep process for potential cancer therapy. Bioconjugate Chem 2015;26:987-99.
21. Lin YX, Wang Y, Qiao SL, An HW, Wang J, Ma Y, et al. "In vivo selfassembled" nanoprobes for optimizing autophagy-mediated chemotherapy. Biomaterials 2017;141:199-209.
22. YangC,RenC,ZhouJ,LiuJ,ZhangY,HuangF,etal.Dualfluorescentand isotopic-labelled self-assembling vancomycin for in vivo imaging of bacterial infections. Angew Chem Int Ed Engl 2017;56:2356-60.
23. Ye D, Shuhendler AJ, Cui L, Tong L, Tee SS, Tikhomirov G, et al. Bioorthogonal cyclization-mediated in situ self-assembly of smallmolecule probes for imaging caspase activity in vivo. Nat Chem 2014;6:519-26.
24. Han A, Wang H, Kwok RTK, Ji S, Li J, Kong D, et al. Peptide-induced AIEgen self-assembly:a new strategy to realize highly sensitive fluorescent light-up probes. Anal Chem 2016;88:3872-8.
25. Lin YX, Qiao SL, Wang Y, Zhang RX, An HW, Ma Y, et al. An in situ intracellular self-assembly strategy for quantitatively and temporally monitoring autophagy. ACS Nano 2017;11:1826-39.
26. Qi GB, Gao YJ, Wang L, Wang H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv Mater 2018; 30:1703444.
27. Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer:causes and therapies. Nat Rev Canc 2001;1:194-202.
28. Chen D, Shen A, Fang G, Liu H, Zhang M, Tang S, et al. Tetrahydroisoquinolines as novel histone deacetylase inhibitors for treatment of cancer. Acta Pharm Sin B 2016;6:93-9.
29. Chen CP, Chen K, Feng Z, Wen X, Sun H. Synergistic antitumor activity of artesunate and HDAC inhibitors through elevating heme synthesis via synergistic upregulation of ALAS1 expression. Acta Pharm Sin B 2019;9:937-51.
30. Cengiz Seval G, Beksac M. A comparative safety review of histone deacetylase inhibitors for the treatment of myeloma. Expet Opin Drug Saf 2019;18:563-71.
31. Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbé C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors:immune-related response criteria. Clin Canc Res 2009;15:7412-20.
32. Acetylation TK. Histone deacetylase inhibitors sensitize prostate cancer. Canc Res 2007;67:5318-27.
33. Natarajan U, Venkatesan T, Radhakrishnan V, Samuel S, Rathinavelu A. Differential mechanisms of cell death induced by HDAC inhibitor SAHA and MDM2 inhibitor RG7388 in MCF-7 cells. Cells 2019;8:8.
34. Konsoula Z, Velena A, Lee R, Dritschilo A, Jung M. Histone deacetylase inhibitor:antineoplastic agent and radiation modulator. Adv Exp Med Biol 2011;720:171-9.
35. Wang EC, Min Y, Palm RC, Fiordalisi JJ, Wagner KT, Hyder N, et al. Nanoparticle formulations of histone deacetylase inhibitors for effective chemoradiotherapy in solid tumors. Biomaterials 2015;51:208-15.
36. Ren C, Gao Y, Guan Y, Wang Z, Yang L, Gao J, et al. Carrier-free supramolecular hydrogel composed of dual drugs for conquering drug resistance. ACS Appl Mater Interfaces 2019;11:33706-15.
37. Xu Q, Lu R, Zhu ZF, Lv JQ, Wang LJ, Zhang W, et al. Effects of tyroservatide on histone acetylation in lung carcinoma cells. Int J Canc 2011;128:460-72.
38. Gao Y, Zhang C, Chang J, Yang C, Liu J, Fan S, et al. Enzymeinstructed self-assembly of a novel histone deacetylase inhibitor with enhanced selectivity and anticancer efficiency. Biomater Sci 2019;7:1477-85.
39. Yin W, Qiang M, Ke W, Han Y, Mukerabigwi JF, Ge Z. Hypoxiaresponsive block copolymer radiosensitizers as anticancer drug nanocarriers for enhanced chemoradiotherapy of bulky solid tumors. Biomaterials 2018;181:360-71.
40. Ren C, Wang H, Zhang X, Ding D, Wang L, Yang Z. Interfacial selfassembly leads to formation of fluorescent nanoparticles for simultaneous bacterial detection and inhibition. Chem Commun 2014;50:3473-5.
41. Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol 2013;3:113.
42. Kuo LJ, Yang LX. g-H2AX-a novel biomarker for DNA double-strand breaks. In Vivo 2008;22:305-9.
43. Sharma A, Singh K, Almasan A. Histone H2AX phosphorylation:a marker for DNA damage. Methods Mol Biol 2012;920:613-26.
44. Kawano T, Akiyama M, Agawa-Ohta M, Mikami-Terao Y, Iwase S, Yanagisawa T, et al. Histone deacetylase inhibitors valproic acid and depsipeptide sensitize retinoblastoma cells to radiotherapy by increasing H2AX phosphorylation and p53 acetylation-phosphorylation. Int J Oncol 2010;37:787-95.
45. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004;59:928-42.
46. Anbumani S, Mohankumar MN. Gamma radiation induced cell cycle perturbations and DNA damage in Catla Catla as measured by flow cytometry. Ecotoxicol Environ Saf 2015;113:18-22.
47. Li X, Li C, Jin J, Wang J, Huang J, Ma Z, et al. High PARP-1 expression predicts poor survival in acute myeloid leukemia and PARP-1 inhibitor and SAHA-bendamustine hybrid inhibitor combination treatment synergistically enhances anti-tumor effects. EBioMedicine 2018;38:47-56.
48. Ye Y, Zhang T, Yuan H, Li D, Lou H, Fan P. Mitochondria-targeted lupane triterpenoid derivatives and their selective apoptosis-inducing anticancer mechanisms. J Med Chem 2017;60:6353-63.
49. Wang H, Feng Z, Wang Y, Zhou R, Yang Z, Xu B. Integrating enzymatic self-assembly and mitochondria targeting for selectively killing cancer cells without acquired drug resistance. J Am Chem Soc 2016;138:16046-55.
50. Dong L, Miao Q, Hai Z, Yuan Y, Liang G. Enzymatic hydrogelationinduced fluorescence turn-off for sensing alkaline phosphatase in vitro and in living cells. Anal Chem 2015;87:6475-8.
51. Harper CB, Popoff MR, McCluskey A, Robinson PJ, Meunier FA. Targeting membrane trafficking in infection prophylaxis:dynamin inhibitors. Trends Cell Biol 2013;23:90-101.
52. Wang H, Feng Z, Xu B. Assemblies of peptides in a complex environment and their applications. Angew Chem Int Ed Engl 2019;58:10423-32.
Similar articles:
1.Xiuxiu Jiao, Yuan Yu, Jianxia Meng, Mei He, Charles Jian Zhang, Wenqian Geng, Baoyue Ding, Zhuo Wang, Xueying Ding.Dual-targeting and microenvironment-responsive micelles as a gene delivery system to improve the sensitivity of glioma to radiotherapy[J]. Acta Pharmaceutica Sinica B, 2019,9(2): 381-396
Similar articles: