Original articles
Yanjuan Huang, Zhanghong Xiao, Zilin Guan, Zishan Zeng, Yifeng Shen, Xiaoyu Xu, Chunshun Zhao. Bone-seeking nanoplatform co-delivering cisplatin and zoledronate for synergistic therapy of breast cancer bone metastasis and bone resorption[J]. Acta Pharmaceutica Sinica B, 2020, 10(12): 2384-2403

Bone-seeking nanoplatform co-delivering cisplatin and zoledronate for synergistic therapy of breast cancer bone metastasis and bone resorption
Yanjuan Huang, Zhanghong Xiao, Zilin Guan, Zishan Zeng, Yifeng Shen, Xiaoyu Xu, Chunshun Zhao
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
Abstract:
The “vicious cycle” established between tumor growth and osteolysis aggravates the process of breast cancer bone metastasis, leading to life-threatening skeletal-related events that severely reduce survival and quality of life. To effectively interrupt the “vicious cycle”, innovative therapeutic strategies that not only reduce osteolysis but also relieve tumor burden are urgently needed. Herein, a bone-seeking moiety, alendronate (ALN), functionalized coordination polymer nanoparticles (DZ@ALN) co-delivering cisplatin prodrug (DSP) and antiresorptive agent zoledronate (ZOL) via Zn2+ crosslinking for combination therapy was reported. The versatile DZ@ALN with a diameter of about 40 nm can cross the fissure in the bone marrow sinus capillaries, and possesses an excellent bone-seeking ability both in vitro and in vivo. Additionally, DZ@ALN could synergistically inhibit the proliferation of cancer cells, suppress the formation of osteoclast-like cells and induce the apoptosis of osteoclasts in vitro. Importantly, it could preferentially accumulate in bone affected site, remarkably inhibit the proliferation of tumor cells, relieving bone pain, and significantly inhibit the activation of osteoclasts, protecting the bone from destruction in vivo, eventually leading to the breakdown of “vicious cycle” without inducing obvious systemic toxicity. This innovative nanoagent combines chemotherapy and osteolysis inhibition, exhibiting an inspiring strategy for effective treatment of bone metastasis.
Key words:    Bone metastasis    Bone targeting    Osteolysis    Zoledronate    Cisplatin   
Received: 2020-03-16     Revised: 2020-06-08
DOI: 10.1016/j.apsb.2020.06.006
Funds: This work was supported by the National Natural Science Foundation of China (Grant No. 81973256/H3008).
Corresponding author: Chunshun Zhao, zhaocs@mail.sysu.edu.cn     Email:zhaocs@mail.sysu.edu.cn
Author description:
Service
PDF(KB) Free
Print
0
Authors
Yanjuan Huang
Zhanghong Xiao
Zilin Guan
Zishan Zeng
Yifeng Shen
Xiaoyu Xu
Chunshun Zhao

References:
1. Brook N, Brook E, Dharmarajan A, Dass CR, Chan A. Breast cancer bone metastases:pathogenesis and therapeutic targets. Int J Biochem Cell Biol 2018;96:63-78.
2. Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone:a fatal attraction. Nat Rev Canc 2011;11:411-25.
3. Mundy GR. Metastasis:metastasis to bone:causes, consequences and therapeutic opportunities. Nat Rev Canc 2002;2:584-93.
4. Suvannasankha A, Chirgwin JM. Role of bone-anabolic agents in the treatment of breast cancer bone metastases. Breast Cancer Res 2014; 16:484.
5. Cleeland C, von Moos R, Walker MS, Wang Y, Gao J, ChavezMacGregor M, et al. Burden of symptoms associated with development of metastatic bone disease in patients with breast cancer. Support Care Canc 2016;24:3557-65.
6. Ren G, Esposito M, Kang Y. Bone metastasis and the metastatic niche. J Mol Med 2015;93:1203-12.
7. Coleman RE. Bone cancer in 2011:prevention and treatment of bone metastases. Nat Rev Clin Oncol 2011;9:76.
8. Subramanian G, McAfee J, Thomas F, Feld T, Zapf-Longo C, Palladino E. New diphosphonate compounds for skeletal imaging:comparison with methylene diphosphonate. Radiology 1983;149:823-8.
9. Kohno N, Aogi K, Minami H, Nakamura S, Asaga T, Iino Y, et al. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer:a randomized, placebo-controlled trial. J Clin Oncol 2005;23:3314-21.
10. Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel M, et al. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res 2000;60:2949-54.
11. Saad F, Brown J, Van Poznak C, Ibrahim T, Stemmer S, Stopeck A, et al. Incidence, risk factors, and outcomes of osteonecrosis of the jaw:integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann Oncol 2011;23:1341-7.
12. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 2005;4:307-20.
13. Rosenberg B, Vancamp L, Trosko JE, Mansour VH. Platinum compounds:a new class of potent antitumour agents. Nature 1969;222:385-6.
14. Peng J, Qi T, Liao J, Chu B, Yang Q, Li W, et al. Controlled release of cisplatin from pH-thermal dual responsive nanogels. Biomaterials 2013;34:8726-40.
15. Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs:targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chem Rev 2016;116:3436-86.
16. He C, Liu D, Lin W. Nanomedicine applications of hybrid nanomaterials built from metaleligand coordination bonds:nanoscale metaleorganic frameworks and nanoscale coordination polymers. Chem Rev 2015;115:11079-108.
17. Dhar S, Daniel WL, Giljohann DA, Mirkin CA, Lippard SJ. Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum (IV) warheads. J Am Chem Soc 2009;131:14652-3.
18. Bi H, Dai Y, Yang P, Xu J, Yang D, Gai S, et al. Glutathione and H2O2 consumption promoted photodynamic and chemotherapy based on biodegradable MnO2-Pt@Au25 nanosheets. Chem Eng J 2019;356:543-53.
19. Yang J, Liu W, Sui M, Tang J, Shen Y. Platinum (IV)-coordinate polymers as intracellular reduction-responsive backbone-type conjugates for cancer drug delivery. Biomaterials 2011;32:9136-43.
20. Li SL, Wang Y, Zhang J, Wei W, Lu H. Targeted delivery of a guanidine-pendant Pt (IV)-backboned poly-prodrug by an anisamidefunctionalized polypeptide. J Mater Chem B 2017;5:9546-57.
21. Yu C, Ding B, Zhang X, Deng X, Deng K, Cheng Z, et al. Targeted iron nanoparticles with platinum-(IV) prodrugs and anti-EZH2 siRNA show great synergy in combating drug resistance in vitro and in vivo. Biomaterials 2018;155:112-3.
22. Rieter WJ, Pott KM, Taylor KM, Lin W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc 2008;130:11584-5.
23. Liu J, Chen Q, Zhu W, Yi X, Yang Y, Dong Z, et al. Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles:a multistage redox/pH/H2O2-responsive cancer theranostic nanoplatform. Adv Funct Mater 2017;27:1605926.
24. He Y, Huang Y, Huang Z, Jiang Y, Sun X, Shen Y, et al. Bisphosphonate-functionalized coordination polymer nanoparticles for the treatment of bone metastatic breast cancer. J Control Release 2017; 264:76-88.
25. Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogene Res 2010;2:14.
26. Tabrizi M, Bornstein GG, Suria H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J 2010;12:33-43.
27. Weinstein JN, Van Osdol W. Early intervention in cancer using monoclonal antibodies and other biological ligands:micropharmacology and the "binding site barrier". Cancer Res 1992;52:2747s-51s.
28. Huang Y, He Y, Huang Z, Jiang Y, Chu W, Sun X, et al. Coordination self-assembly of platinumebisphosphonate polymeremetal complex nanoparticles for cisplatin delivery and effective cancer therapy. Nanoscale 2017;9:10002-19.
29. Huang Z, Huang L, Huang Y, He Y, Sun X, Fu X, et al. Phthalocyanine-based coordination polymer nanoparticles for enhanced photodynamic therapy. Nanoscale 2017;9:15883-94.
30. Huang Y, Jiang Y, Xiao Z, Shen Y, Huang L, Xu X, et al. Three birds with one stone:a ferric pyrophosphate based nanoagent for synergetic NIR-triggered photo/chemodynamic therapy with glutathione depletion. Chem Eng J 2020;380:122369.
31. Huang Y, Xiao Z, Guan Z, Shen Y, Jiang Y, Xu X, et al. A lighttriggered self-reinforced nanoagent for targeted chemophotodynamic therapy of breast cancer bone metastases via ER stress and mitochondria mediated apoptotic pathways. J Control Release 2020;319:119-34.
32. Au KM, Satterlee A, Min Y, Tian X, Kim YS, Caster JM, et al. Folatetargeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks:turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials 2016;82:178-93.
33. Chu W, Huang Y, Yang C, Liao Y, Zhang X, Yan M, et al. Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Int J Pharm (Amst) 2017;516:352-63.
34. Zhao L, Wientjes MG, Au JL. Evaluation of combination chemotherapy:integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Canc Res 2004;10:7994-8004.
35. Mei D, Chen B, He B, Liu H, Lin Z, Lin J, et al. Actively priming autophagic cell death with novel transferrin receptor-targeted nanomedicine for synergistic chemotherapy against breast cancer. Acta Pharm Sin B 2019;9:1061-77.
36. He X, Andersson G, Lindgren U, Li Y. Resveratrol prevents RANKLinduced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production. Biochem Bioph Res 2010;401:356-62.
37. Vincent C, Kogawa M, Findlay DM, Atkins GJ. The generation of osteoclasts from RAW 264.7 precursors in defined, serum-free conditions. J Bone Miner Metabol 2009;27:114-9.
38. Kim JH, Kim EY, Lee B, Min JH, Song DU, Lim JM, et al. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells. Int J Mol Med 2016;37:649-58.
39. Wang F, Chen L, Zhang R, Chen Z, Zhu L. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer.JControlRelease 2014;196:222-33.
40. Zhou F, Mei J, Han X, Li H, Yang S, Wang M, et al. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-кB/MAPK signaling and protecting chondrocytes. Acta Pharm Sin B 2019;9:973-85.
41. Glausch A, Loeffler R, Sigg J, inventors. Pharmaceutical products comprising bisphosphonates. United States Patent US7932241B2. 2003 September 18.
42. Silver I, Murrills R, Etherington D. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res 1988;175:266-76.
43. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008;3:S131-9.
44. Swami A, Reagan MR, Basto P, Mishima Y, Kamaly N, Glavey S, et al. Engineered nanomedicine for myeloma and bone microenvironment targeting. P Natl A Sci India B 2014;111:10287-92.
45. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Canc 2007;7:573-84.
46. Räikkönen J, Crockett JC, Rogers MJ, Mönkkönen H, Auriola S, Mönkkönen J. Zoledronic acid induces formation of a pro-apoptotic ATP analogue and isopentenyl pyrophosphate in osteoclasts in vivo and in MCF-7 cells in vitro. Br J Pharmacol 2009;157:427-35.
47. Ibrahim T, Liverani C, Mercatali L, Sacanna E, Zanoni M, Fabbri F, et al. Cisplatin in combination with zoledronic acid:a synergistic effect in triple-negative breast cancer cell lines. Corrigendum in/10.3892/ijo. 2016.3613. Int J Oncol 2013;42:1263-70.
48. Fujise K, Zhang D, Liu Jl, Yeh ET. Regulation of apoptosis and cell cycle progression by MCL1 differential role of proliferating cell nuclear antigen. J Biol Chem 2000;275:39458-65.
49. Ellard SL, Clemons M, Gelmon KA, Norris B, Kennecke H, Chia S, et al. Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer:NCIC clinical trials group IND. 163. J Clin Oncol 2009;27:4536-41.
50. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011;121:2750-67.
51. Moriceau G, Ory B, Mitrofan L, Riganti C, Blanchard F, Brion R, et al. Zoledronic acid potentiates mTOR inhibition and abolishes the resistance of osteosarcoma cells to RAD001 (Everolimus):pivotal role of the prenylation process. Cancer Res 2010;70:10329-39.
52. Meng F, Wang J, Ping Q, Yeo Y. Quantitative assessment of nanoparticle biodistribution by fluorescence imaging, revisited. ACS Nano 2018;12:6458-68.
53. Shalgunov V, Zaytseva-Zotova D, Zintchenko A, Levada T, Shilov Y, Andreyev D, et al. Comprehensive study of the drug delivery properties of poly (L-lactide)-poly (ethylene glycol) nanoparticles in rats and tumor-bearing mice. J Control Release 2017;261:31-42.
54. Swami A, Reagan MR, Basto P, Mishima Y, Kamaly N, Glavey S, et al. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci U S A 2014;111:10287-92.
55. Valkenburg KC, Steensma MR, Williams BO, Zhong Z. Skeletal metastasis:treatments, mouse models, and the Wnt signaling. Chin J Canc 2013;32:380-96.
56. Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA. Ki67 in breast cancer:prognostic and predictive potential. Lancet Oncol 2010;11:174-83.
57. Sun W, Ge K, Jin Y, Han Y, Zhang H, Zhou G, et al. Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano 2019;13:7556-67.
58. Li D, Nie W, Chen L, McCoul D, Liu D, Zhang X, et al. Self-assembled hydroxyapatite-graphene scaffold for photothermal cancer therapy and bone regeneration. J Biomed Nanotechnol 2018;14:2003-17.
59. Son HS, Lee J, Lee HI, Kim N, Jo YJ, Lee GR, et al. Benzydamine inhibits osteoclast differentiation and bone resorption via downregulation of interleukin-1b expression. Acta Pharm Sin B 2020;10:462-74.
Similar articles: