Original articles
Yixian Zhou, Boyi Niu, Biyuan Wu, Sulan Luo, Jintao Fu, Yiting Zhao, Guilan Quan, Xin Pan, Chuanbin Wu. A homogenous nanoporous pulmonary drug delivery system based on metal-organic frameworks with fine aerosolization performance and good compatibility[J]. Acta Pharmaceutica Sinica B, 2020, 10(12): 2404-2416

A homogenous nanoporous pulmonary drug delivery system based on metal-organic frameworks with fine aerosolization performance and good compatibility
Yixian Zhoua, Boyi Niua, Biyuan Wua, Sulan Luoa, Jintao Fua, Yiting Zhaoa, Guilan Quanb, Xin Pana, Chuanbin Wua
a School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
b College of Pharmacy, Jinan University, Guangzhou 510632, China
Abstract:
Pulmonary drug delivery has attracted increasing attention in biomedicine, and porous particles can effectively enhance the aerosolization performance and bioavailability of drugs. However, the existing methods for preparing porous particles using porogens have several drawbacks, such as the inhomogeneous and uncontrollable pores, drug leakage, and high risk of fragmentation. In this study, a series of cyclodextrin-based metal-organic framework (CD-MOF) particles containing homogenous nanopores were delicately engineered without porogens. Compared with commercial inhalation carrier, CDMOF showed excellent aerosolization performance because of the homogenous nanoporous structure. The great biocompatibility of CD-MOF in pulmonary delivery was also confirmed by a series of experiments, including cytotoxicity assay, hemolysis ratio test, lung function evaluation, in vivo lung injury markers measurement, and histological analysis. The results of ex vivo fluorescence imaging showed the high deposition rate of CD-MOF in lungs. Therefore, all results demonstrated that CD-MOF was a promising carrier for pulmonary drug delivery. This study may throw light on the nanoporous particles for effective pulmonary administration.
Key words:    Pulmonary drug delivery    Metal-organic framework    Inhalable dry powder    Nanoporous particle   
Received: 2020-03-13     Revised: 2020-05-24
DOI: 10.1016/j.apsb.2020.07.018
Funds: This work was supported by the National Natural Science Foundation of China (Grant No. 81803466), the Research and Development Plan for Key Areas in Guangdong Province (Grant No. 2019B020204002, China), the National Science and Technology Major Program (Grant No. 2017zx09101001, China), and Natural Science Foundation of Guangdong Province (Grant No. 2018A030310095, China).
Corresponding author: Guilan Quan, xiaoplanet@163.com;Chuanbin Wu, wuchuanb@mail.sysu.edu.cn     Email:xiaoplanet@163.com;wuchuanb@mail.sysu.edu.cn
Author description:
Service
PDF(KB) Free
Print
0
Authors
Yixian Zhou
Boyi Niu
Biyuan Wu
Sulan Luo
Jintao Fu
Yiting Zhao
Guilan Quan
Xin Pan
Chuanbin Wu

References:
1. Abdelaziz HM, Gaber M, Abd-Elwakil MM, Mabrouk MT, Elgohary MM, Kamel NM, et al. Inhalable particulate drug delivery systems for lung cancer therapy:nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release 2018;269:374-92.
2. Ni R, Zhao J, Liu QY, Liang ZL, Muenster U, Mao SR. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery. Eur J Pharmaceut Sci 2017;99:137-46.
3. Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc 2004;1:338-44.
4. Lu DM, Hickey AJ. Pulmonary vaccine delivery. Expert Rev Vaccines 2007;6:213-26.
5. Karashima M, Sano N, Yamamoto S, Arai Y, Yamamoto K, Amano N, et al. Enhanced pulmonary absorption of poorly soluble itraconazole by micronized cocrystal dry powder formulations. Eur J Pharm Biopharm 2017;115:65-72.
6. Chen L, Okuda T, Lu XY, Chan HK. Amorphous powders for inhalation drug delivery. Adv Drug Deliv Rev 2016;100:102-15.
7. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 2010;392:1-19.
8. Chandel A, Goyal AK, Ghosh G, Rath G. Recent advances in aerosolised drug delivery. Biomed Pharmacother 2019;112:108601.
9. Hang ZL, Ni R, Zhou JY, Mao SR. Recent advances in controlled pulmonary drug delivery. Drug Discov Today 2015;20:380-9.
10. Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials 2009;30:1947-53.
11. Li JQ, Zheng HL, Qin L, Xu EY, Yang LL, Zhang L, et al. In vitro-in vivo correlation of inhalable budesonide-loaded large porous particles for sustained treatment regimen of asthma. Acta Biomater 2019; 96:505-16.
12. Kadota K, Yanagawa Y, Tachikawa T, Deki Y, Uchiyama H, Shirakawa Y, et al. Development of porous particles using dextran as an excipient for enhanced deep lung delivery of rifampicin. Int J Pharm 2019;555:280-90.
13. Lin XF, Kankala RK, Tang N, Xu PY, Hao LZ, Yang DY, et al. Supercritical fluid-assisted porous microspheres for efficient delivery of insulin and inhalation therapy of diabetes. Adv Healthc Mater 2019;8:1800910.
14. Chvatal A, Ambrus R, Party P, Katona G, Jójárt-Laczkovich O, Szabó-Révész P, et al. Formulation and comparison of spray dried non-porous and large porous particles containing meloxicam for pulmonary drug delivery. Int J Pharm 2019;559:68-75.
15. Kim HK, Chung HJ, Park TG. Biodegradable polymeric microspheres with ""open/closed"" pores for sustained release of human growth hormone. J Control Release 2006;112:167-74.
16. Hou AL, Li L, Huang Y, Singh V, Zhu CE, Pan X, et al. Fragmented particles containing octreotide acetate prepared by spray drying technique for dry powder inhalation. Drug Deliv Transl Res 2018;8:693-701.
17. Cai YP, Chen YH, Hong XY, Liu ZG, Yuan WE. Porous microsphere and its applications. Int J Nanomed 2013;8:1111-20.
18. Li X, Xue M, Raabe OG, Aaron HL, Eisen EA, Evans JE, et al. Aerosol droplet delivery of mesoporous silica nanoparticles:a strategy for respiratory-based therapeutics. Nanomedicine 2015;11:1377-85.
19. Hozayen WG, Mahmoud AM, Desouky EM, El-Nahass ES, Soliman HA, Farghali AA. Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats. Biomed Pharmacother 2019; 109:2527-38.
20. Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science 2013;341:1230444.
21. Wang H, Lustig WP, Li J. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks. Chem Soc Rev 2018; 47:4729-56.
22. Tian T, Zeng ZX, Vulpe D, Casco ME, Divitini G, Midgley PA, et al. A sol-gel monolithic metal-organic framework with enhanced methane uptake. Nat Mater 2018;17:174-9.
23. Jia HX, Yao YC, Zhao JT, Gao YY, Luo ZL, Du PW. A novel twodimensional nickel phthalocyanine-based metal-organic framework for highly efficient water oxidation catalysis. J Mater Chem A 2018;6:1188-95.
24. Rui K, Zhao GQ, Chen YP, Lin Y, Zhou Q, Chen JY, et al. Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv Funct Mater 2018;28:1801554.
25. Guan BY, Yu XY, Wu HB, Lou XW. Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv Mater 2017;29:1703614.
26. Denny MS, Moreton JC, Benz L, Cohen SM. Metal-organic frameworks for membrane-based separations. Nat Rev Mater 2016;1:16078.
27. Desai AV, Manna B, Karmakar A, Sahu A, Ghosh SK. A water-stable cationic metal-organic framework as a dual adsorbent of oxoanion pollutants. Angew Chem Int Ed 2016;55:7811-5.
28. Duan CX, Li FE, Luo SJ, Xiao J, Li LB, Xi HX. Facile synthesis of hierarchical porous metal-organic frameworks with enhanced catalytic activity. Chem Eng J 2018;334:1477-83.
29. Chen W, Wu CS. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine. Dalton Trans 2018;47:2114-33.
30. Lan GX, Ni KY, Xu ZW, Veroneau SS, Song Y, Lin WB. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J Am Chem Soc 2018;140:5670-3.
31. Xiao JS, Chen SY, Yi J, Zhang HF, Ameer GA. A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes. Adv Funct Mater 2017;27:1604872.
32. Kim SN, Park CG, Huh BK, Lee SH, Min CH, Lee YY, et al. Metalorganic frameworks, NH2-MIL-88(Fe), as carriers for ophthalmic delivery of brimonidine. Acta Biomater 2018;79:344-53.
33. Giménez-Marqués M, Hidalgo T, Serre C, Horcajada P. Nanostructured metal-organic frameworks and their bio-related applications. Coord Chem Rev 2016;307:342-60.
34. Smaldone RA, Forgan RS, Furukawa H, Gassensmith JJ, Slawin AMZ, Yaghi OM, et al. Metal-organic frameworks from edible natural products. Angew Chem Int Ed 2010;49:8630-4.
35. Forgan RS, Smaldone RA, Gassensmith JJ, Furukawa H, Cordes DB, Li QW, et al. Nanoporous carbohydrate metal-organic frameworks. J Am Chem Soc 2012;134:406-17.
36. Li HY, Lv NN, Li X, Liu BT, Feng J, Ren XH, et al. Composite CDMOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale 2017;9:7454-63.
37. Liu BT, Li HY, Xu XN, Li X, Lv NN, Singh V, et al. Optimized synthesis and crystalline stability of gamma-cyclodextrin metal-organic frameworks for drug adsorption. Int J Pharm 2016;514:212-9.
38. He YZ, Zhang W, Guo T, Zhang GQ, Qin W, Zhang L, et al. Drug nanoclusters formed in confined nano-cages of CD-MOF:dramatic enhancement of solubility and bioavailability of azilsartan. Acta Pharm Sin B 2019;9:97-106.
39. Mohtar N, Taylor KMG, Sheikh K, Somavarapu S. Design and development of dry powder sulfobutylether-beta-cyclodextrin complex for pulmonary delivery of fisetin. Eur J Pharm Biopharm 2017;113:1-10.
40. Kinnarinen T, Jarho P, Jarvinen K, Jarvinen T. Pulmonary deposition of a budesonide/gamma-cyclodextrin complex in vitro. J Control Release 2003;90:197-205.
41. Loftsson T, Jarho P, Masson M, Jarvinen T. Cyclodextrins in drug delivery. Expet Opin Drug Deliv 2005;2:335-51.
42. Stigliani M, Aquino RP, Del Gaudio P, Mencherini T, Sansone F, Russo P. Non-steroidal anti-inflammatory drug for pulmonary administration:design and investigation of ketoprofen lysinate fine dry powders. Int J Pharm 2013;448:198-204.
43. Hu J, Liu H, Xu P, Shang Y. Investigation of drug for pulmonary administration-model pulmonary surfactant monolayer interactions using Langmuir-Blodgett monolayer and molecular dynamics simulation:a case study of ketoprofen. Langmuir 2019;35:13452-60.
44. Singh V, Guo T, Xu HT, Wu L, Gu JK, Wu CB, et al. Moisture resistant and biofriendly CD-MOF nanoparticles obtained via cholesterol shielding. Chem Commun 2017;53:9246-9.
45. Lin L, Quan GL, Peng TT, Huang ZW, Singh V, Lu M, et al. Development of fine solid-crystal suspension with enhanced solubility, stability, and aerosolization performance for dry powder inhalation. Int J Pharm 2017;533:84-92.
46. Wang SZ, McGuirk CM, d'Aquino A, Mason JA, Mirkin CA. Metalorganic framework nanoparticles. Adv Mater 2018;30:1800202.
47. Peng TT, Lin SQ, Niu BY, Wang XY, Huang Y, Zhang XJ, et al. Influence of physical properties of carrier on the performance of dry powder inhalers. Acta Pharm Sin B 2016;6:308-18.
48. Sheng JJ, Kasim NA, Chandrasekharan R, Amidon GL. Solubilization and dissolution of insoluble weak acid, ketoprofen:effects of pH combined with surfactant. Eur J Pharmaceut Sci 2006;29:306-14.
49. Velaga SP, Djuris J, Cvijic S, Rozou S, Russo P, Colombo G, et al. Dry powder inhalers:an overview of the in vitro dissolution methodologies and their correlation with the biopharmaceutical aspects of the drug products. Eur J Pharmaceut Sci 2018;113:18-28.
50. Marple VA, Roberts DL, Romay FJ, Miller NC, Truman KG, Holroyd MJ, et al. Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part I:design. J Aerosol Med-Depos Clear Eff Lung 2003;16:283-99.
51. Hu XX, Wang CF, Wang LB, Liu ZX, Wua L, Zhang GQ, et al. Nanoporous CD-MOF particles with uniform and inhalable size for pulmonary delivery of budesonide. Int J Pharm 2019;564:153-61.
52. Vanbever R, Mintzes JD, Wang J, Nice J, Chen D, Batycky R, et al. Formulation and physical characterization of large porous particles for inhalation. Pharm Res 1999;16:1735-42.
53. Zhang XJ, Yue X, Cui YT, Zhao ZY, Huang Y, Cai SH, et al. A systematic safety evaluation of nanoporous mannitol material as a dry-powder inhalation carrier system. J Pharm Sci 2020;109:1692-702.
54. Irvin CG, Bates JH. Measuring the lung function in the mouse:the challenge of size. Respir Res 2003;4:4.
55. Okuda T, Morishita M, Mizutani K, Shibayama A, Okazaki M, Okamoto H. Development of spray-freeze-dried siRNA/PEI powder for inhalation with high aerosol performance and strong pulmonary gene silencing activity. J Control Release 2018;279:99-113.
Similar articles: