Original articles
Ying Xiao, Jingxian Feng, Qing Li, Yangyun Zhou, Qitao Bu, Junhui Zhou, Hexin Tan, Yingbo Yang, Lei Zhang, Wansheng Chen. IiWRKY34 positively regulates yield, lignan biosynthesis and stress tolerance in Isatis indigotica[J]. Acta Pharmaceutica Sinica B, 2020, 10(12): 2417-2432

IiWRKY34 positively regulates yield, lignan biosynthesis and stress tolerance in Isatis indigotica
Ying Xiaoa, Jingxian Fenga, Qing Lib, Yangyun Zhoub, Qitao Buc, Junhui Zhoud, Hexin Tanc, Yingbo Yange, Lei Zhangc, Wansheng Chena,b
a Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
b Department of Pharmacy, Changzheng Hospital, Naval Medical University(Second Military Medical University), Shanghai 200003, China;
c Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University(Second Military Medical University), Shanghai 200433, China;
d National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
e Kanion Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
Abstract:
Yield potential, pharmaceutical compounds production and stress tolerance capacity are 3 classes of traits that determine the quality of medicinal plants. The autotetraploid Isatis indigotica has greater yield, higher bioactive lignan accumulation and enhanced stress tolerance compared with its diploid progenitor. Here we show that the transcription factor IiWRKY34, with higher expression levels in tetraploid than in diploid I. indigotica, has large pleiotropic effects on an array of traits, including biomass growth rates, lignan biosynthesis, as well as salt and drought stress tolerance. Integrated analysis of transcriptome and metabolome profiling demonstrated that IiWRKY34 expression had far-reaching consequences on both primary and secondary metabolism, reprograming carbon flux towards phenylpropanoids, such as lignans and flavonoids. Transcript-metabolite correlation analysis was applied to construct the regulatory network of IiWRKY34 for lignan biosynthesis. One candidate target Ii4CL3, a key rate-limiting enzyme of lignan biosynthesis as indicated in our previous study, has been demonstrated to indeed be activated by IiWRKY34. Collectively, the results indicate that the differentially expressed IiWRKY34 has contributed significantly to the polyploidy vigor of I. indigotica, and manipulation of this gene will facilitate comprehensive improvements of I. indigotica herb.
Key words:    Polyploidy vigor    WRKY transcription factor    Biomass production    Lignan biosynthesis    Stress tolerance   
Received: 2019-11-06     Revised: 2019-11-14
DOI: 10.1016/j.apsb.2019.12.020
Funds: This work was sponsored by National Natural Science Foundation of China (Grant Nos. 31872665, 81874335 and 31670292) and Shanghai Rising-Star Program (18QB1402700, China).
Corresponding author: Lei Zhang, smmuipb@163.com;Wansheng Chen, chenwansheng@smmu.edu.cn     Email:smmuipb@163.com;chenwansheng@smmu.edu.cn
Author description:
Service
PDF(KB) Free
Print
0
Authors
Ying Xiao
Jingxian Feng
Qing Li
Yangyun Zhou
Qitao Bu
Junhui Zhou
Hexin Tan
Yingbo Yang
Lei Zhang
Wansheng Chen

References:
1. Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, et al. Understanding mechanisms of novel gene expression in polyploids. Trends Genet 2003;19:141-7.
2. Alix K, Gérard PR, Schwarzacher T, Heslopharrison J. Polyploidy and interspecific hybridization:partners for adaptation, speciation and evolution in plants. Ann Bot-London 2017;120:183-94.
3. Cheng F, Wu J, Cai X, Liang J, Freeling M, Wang X. Gene retention, fractionation and subgenome differences in polyploid plants. Nat Plants 2018;4:258-68.
4. Council NP. China pharmacopoeia. 2013 ed. Beijing:Beijing Chemical Industry; 2015.
5. Li B. Studies on active constituents and quality evaluation of Banlangen. Shanghai:Second Military University; 2003.
6. Li J, Zhou B, Li C, Chen Q, Wang Y, Li Z, et al. Lariciresinol-4-O-bD-glucopyranoside from the root of Isatis indigotica inhibits influenza A virus-induced pro-inflammatory response. J Ethnopharmacol 2015; 174:379-86.
7. Yang Z, Wang Y, Zheng Z, Zhao S, Zhao J, Lin Q, et al. Antiviral activity of Isatis indigotica root-derived clemastanin B against human and avian influenza A and B viruses in vitro. Int J Mol Med 2013;31:867-73.
8. Qiao CZ. Studies on polyploid breeding of Isatis indigotica Fort. J Integr 1989;31:678-83.
9. Qiao C, Li H. Cultivation and popularization for tetraploidy strain of Isatis indigotica. J Chin Med Mater 1994;17:3-6.
10. Initiative AG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000;408:796-815.
11. Lu B, Pan X, Zhang L, Huang B, Sun L, Li B, et al. A genome-wide comparison of genes responsive to autopolyploidy in Isatis indigotica using Arabidopsis thaliana Affymetrix genechips. Plant Mol Biol Report 2006;24:197-204.
12. Xiao Y, Yu X, Chen J, Di P, Chen W, Zhang L. IiSDD1, a gene responsive to autopolyploidy and environmental factors in Isatis indigotica. Mol Biol Rep 2010;37:987-94.
13. Pan X, Xiao Y, Wang Z, Zhang L, Tang K. Tetraploids Isatis indigotica are more responsive and adaptable to stresses than the diploid progenitor based on changes in expression patterns of a cold inducible IiCPK1. Biologia 2008;63:535-41.
14. Lu B, Ding R, Zhang L, Yu X, Huang B, Chen W. Molecular cloning and characterization of a novel calcium-dependent protein kinase gene IiCPK2 responsive to polyploidy from tetraploid Isatis indigotica. J Biochem Mol Biol 2006;39:607-17.
15. Lu B, Du Z, Ding R, Zhang L, Yu X, Liu C, et al. Cloning and characterization of a differentially expressed phenylalanine ammonialyase gene (liPAL) after genome duplication from tetraploid Isatis indigotica Fort. J Integr 2006;48:1439-49.
16. Zhou Y, Kang L, Liao S, Pan Q, Ge X, Li Z. Transcriptomic analysis reveals differential gene expressions for cell growth and functional secondary metabolites in induced autotetraploid of Chinese Woad (Isatis indigotica Fort.). PLoS One 2015;10:e116392.
17. Colinas M, Goossens A. Combinatorial transcriptional control of plant specialized metabolism. Trends Plant Sci 2018;17:S1360-85.
18. Chu Y, Xiao S, Su H, Liao B, Zhang J, Xu J, et al. Genome-wide characterization and analysis of bHLH transcription factors in Panax ginseng. Acta Pharm Sin B 2018;8:666-77.
19. Zhang Y, Xu Z, Ji A, Luo H, Song J. Genomic survey of bZIP transcription factor genes related to tanshinone biosynthesis in Salvia miltiorrhiza. Acta Pharm Sin B 2018;8:295-305.
20. Chen F, Hu Y, Vannozzi A, Wu K, Cai H, Qin Y, et al. The WRKY transcription factor family in model plants and crops. Crit Rev Plant Sci 2018;36:1-25.
21. Chen J, Xin D, Li Q, Xun Z, Gao S, Chen R, et al. Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling. BMC Genomics 2013;14:857.
22. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-402.
23. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res 2004;28:263-6.
24. Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool:identification of signaling domains. Proc Natl Acad Sci U S A 1998;95:5857-64.
25. Letunic I, Doerks T, Bork P. Smart 7:recent updates to the protein domain annotation resource. Nucleic Acids Res 2012;40:302-5.
26. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. Methods Mol Biol 1999;112:531.
27. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, et al. Clustal W and clustal X version 2.0. Bioinformatics 2007;23:2947-8.
28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731-9.
29. Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factor. Trends Plant Sci 2000;5:199-206.
30. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. Meme suite:tools for motif discovery and searching. Nucleic Acids Res 2009;37:W202-8.
31. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, et al. The STRING database in 2011:functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2010;39:D561-8.
32. Li Q, Chen J, Xiao Y, Di P, Zhang L, Chen W. The dirigent multigene family in Isatis indigotica:gene discovery and differential transcript abundance. BMC Genomics 2014;15:388.
33. Xiao Y, Ji Q, Gao S, Tan H, Chen R, Li Q, et al. Combined transcriptome and metabolite profiling reveals that IiPLR1 plays an important role in lariciresinol accumulation in Isatis indigotica. J Exp Bot 2015;66:6259.
34. Saito K, Matsuda F. Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 2010;61:463-89.
35. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, et al. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 2001;27:581-90.
36. Chilton MD, Tepfer DA, Petit A, David C, Cassedelbart F, Tempé J. Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 1982;295:432-4.
37. de Micco V, Aronne G. Combined histochemistry and autofluorescence for identifying lignin distribution in cell walls. Biotech Histochem 2007;82:209-16.
38. Wang F, Chen HW, Li QT, Wei W, Li W, Zhang WK, et al. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J 2015;83:224-36.
39. Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil 1973;39:205-7.
40. Zhang Y, Yan YP, Wang ZZ. The Arabidopsis PAP1 transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza. J Agric Food Chem 2010;58:12168-75.
41. Consortium TGO, Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. Gene ontology:tool for the unification of biology. Nat Genet 2000;25:25-9.
42. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. A systems biology approach for pathway level analysis. Genome Res 2007;17:1537.
43. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 2006;1:387-96.
44. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4:a free, open-source system for microarray data management and analysis. Biotechniques 2003;34:374-8.
45. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using cytoscape. Nat Protoc 2007;2:2366-82.
46. Zhang F, Fu X, Lv Z, Lu X, Shen Q, Zhang L, et al. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Mol Plant 2015;8:163-75.
47. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, et al. Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell 2005;17:944-56.
48. Guo C, Guo R, Xu X, Gao M, Li X, Song J, et al. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J Exp Bot 2014;65:1513-28.
49. He H, Dong Q, Shao Y, Jiang H, Zhu S, Cheng B, et al. Genome-wide survey and characterization of the gene family in Populus trichocarpa. Plant Cell Rep 2012;31:1199-217.
50. Ling J, Jiang W, Zhang Y, Yu H, Mao Z, Gu X, et al. Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics 2011;12:471.
51. Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and highsalinity stress conditions. Plant Physiol 2004;136:2734-46.
52. Zhou C, Zhang L, Duan J, Miki B, Wu K. Histone deacetylase19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 2005;17:1196-204.
53. Xie Y, LI W, Guo D, Dong J, Zhang Q, Fu Y, et al. The Arabidopsis gene sigma factor-binding protein 1 plays a role in the salicylate-and jasmonate-mediated defence responses. Plant Cell Environ 2010;33:828-39.
54. Hano C, Addi M, Bensaddek L, Crã Nier D, Baltora-Rosset S, Doussot J, et al. Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. Planta 2006;223:975-89.
55. Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 2007;59:206-16.
56. Zhang L, Chen J, Zhou X, Chen X, Li Q, Tan H, et al. Dynamic metabolic and transcriptomic profiling of methyl jasmonate-treated hairy roots reveals synthetic characters and regulators of lignan biosynthesis in Isatis indigotica Fort. Plant Biotechnol J 2016;14:2217-27.
57. Jiang Y, Deyholos MK. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 2009;69:91-105.
58. Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, et al. WRKY transcription factors:key components in abscisic acid signalling. Plant Biotechnol J 2011;10:2-11.
59. Pauwels L, Morreel K, Witte ED, Lammertyn F, Montagu MV, Boerjan W, et al. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. P Natl Acad Sci USA 2008;105:1380-5.
60. Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 2007;7:2.
61. Bush DS. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 1995;46:95-122.
62. Gechev TS, Hille J, Woerdenbag HJ, Benina M, Mehterov N, Toneva V, et al. Natural products from resurrection plants:potential for medical applications. Biotechnol Adv 2014;32:1091-101.
63. Xu Y, Wang J, Wang S, Wang J, Chen X. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-d-cadinene synthase-A. Plant Physiol 2004; 135:507-15.
64. Schluttenhofer C, Pattanaik S, Patra B, Yuan L. Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling. BMC Genomics 2014;15:502.
Similar articles: