Pei Wang, Fang Wang, Lan Ni, Pengfei Wu, Jianguo Chen. Targeting redox-altered plasticity to reactivate synaptic function: A novel therapeutic strategy for cognitive disorder[J]. Acta Pharmaceutica Sinica B, 2021, 11(3): 599-608

Targeting redox-altered plasticity to reactivate synaptic function: A novel therapeutic strategy for cognitive disorder
Pei Wanga, Fang Wanga,b,c,d, Lan Nia, Pengfei Wua,c, Jianguo Chena,b,c,d
a Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
b Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China;
c The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China;
d Laboratory of Neuropsychiatric Diseases, the Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
Redox-altered plasticity refers to redox-dependent reversible changes in synaptic plasticity via altering functions of key proteins, such as N-methyl-D-aspartate receptor (NMDAR). Age-related cognitive disorders includes Alzheimer’s disease (AD), vascular dementia (VD), and age-associated memory impairment (AAMI). Based on the critical role of NMDAR-dependent long-term potentiation (LTP) in memory, the increase of reactive oxygen species in cognitive disorders, and the sensitivity of NMDAR to the redox status, converging lines have suggested the redox-altered NMDAR-dependent plasticity might underlie the synaptic dysfunctions associated with cognitive disorders. In this review, we summarize the involvement of redox-altered plasticity in cognitive disorders by presenting the available evidence. According to reports from our laboratory and other groups, this “redox-altered plasticity” is more similar to functional changes rather than organic injuries, and strategies targeting redox-altered plasticity using pharmacological agents might reverse synaptic dysfunctions and memory abnormalities in the early stage of cognitive disorders. Targeting redox modifications for NMDARs may serve as a novel therapeutic strategy for memory deficits.
Key words:    Reactive oxygen species    N-Methyl-D-aspartate receptor    Oxidative stress    Synaptic plasticity    Long-term potentiation    Cognitive disorder    Learning and memory    Hydrogen sulfide   
Received: 2020-08-09     Revised: 2020-09-22
DOI: 10.1016/j.apsb.2020.11.012
Funds: This work was supported by grants from the National Natural Science Foundation of China (No. 81773712 to Pengfei Wu, Nos. 81471377 and 81671438 to Fang Wang, Nos. 81473198 and 81673414 to Jianguo Chen) and Foundation for Innovative Research Groups of NSFC (No. 81721005 to Jianguo Chen and Fang Wang, China).
Corresponding author: Pengfei Wu, Jianguo Chen;
Author description:
PDF(KB) Free
Pei Wang
Fang Wang
Lan Ni
Pengfei Wu
Jianguo Chen

1. Qiu J. Ticking time bomb faced by China’s ageing population. Lancet Neurol 2007;6:582-3.
2. Bliss TV, Gardner-Medwin AR. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol 1973;232: 357-74.
3. Bliss TV, Collingridge GL. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993;361:31-9.
4. Lynch MA. Long-term potentiation and memory. Physiol Rev 2004; 84:87-136.
5. Kidd PM. Alzheimer’s disease, amnestic mild cognitive impairment, and age-associated memory impairment: Current understanding and progress toward integrative prevention. Alternative Med Rev 2008; 13:85-115.
6. Rowan MJ, Klyubin I, Wang Q, Hu NW, Anwyl R. Synaptic memory mechanisms: Alzheimer’s disease amyloid beta-peptide-induced dysfunction. Biochem Soc Trans 2007;35:1219-23.
7. Mothet JP, Rouaud E, Sinet PM, Potier B, Jouvenceau A, Dutar P, et al. A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 2006;5:267-74.
8. Battaglia F, Wang HY, Ghilardi MF, Gashi E, Quartarone A, Friedman E, et al. Cortical plasticity in Alzheimer’s disease in humans and rodents. Biol Psychiatr 2007;62:1405-12.
9. Foster TC. Regulation of synaptic plasticity in memory and memory decline with aging. Prog Brain Res 2002;138:283-303.
10. Tang LH, Aizenman E. Long-lasting modification of the N-methyl-D-aspartate receptor channel by a voltage-dependent sulfhydryl redox process. Mol Pharmacol 1993;44:473-8.
11. Lipton SA, Choi YB, Takahashi H, Zhang D, Li W, Godzik A, et al. Cysteine regulation of protein function-as exemplified by NMD-Areceptor modulation. Trends Neurosci 2002;25:474-80.
12. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992;59:1609-23.
13. Ibi M, Liu JJ, Arakawa N, Kitaoka S, Kawaji A, Matsuda K, et al. Depressive-like behaviors are regulated by NOX1/NADPH oxidase by redox modification of NMDA receptor 1. J Neurosci 2017;37: 4200-12.
14. Jang EY, Ryu YH, Lee BH, Chang SC, Yeo MJ, Kim SH, et al. Involvement of reactive oxygen species in cocaine-taking behaviors in rats. Addiction Biol 2015;20:663-75.
15. Ravaglia G, Forti P, Maioli F, Bianchi G, Martelli M, Talerico T, et al. Plasma amino acid concentrations in patients with amnestic mild cognitive impairment or Alzheimer’s disease. Am J Clin Nutr 2004;80:483-8.
16. Wang S, Irving G, Jiang L, Wang H, Li M, Wang X, et al. Oxidative stress mediated hippocampal neuron apoptosis participated in carbon disulfide-induced rats cognitive dysfunction. Neurochem Res 2017; 42:583-94.
17. Ji MH, Qiu LL, Tang H, Ju LS, Sun XR, Zhang H, et al. Sepsisinduced selective parvalbumin interneuron phenotype loss and cognitive impairments may be mediated by NADPH oxidase 2 activation in mice. J Neuroinflammation 2015;12:182.
18. Rehman SU, Shah SA, Ali T, Chung JI, Kim MO. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol Neurobiol 2017;54: 255-71.
19. Guo XD, Sun GL, Zhou TT, Wang YY, Xu X, Shi XF, et al. LX2343 alleviates cognitive impairments in AD model rats by inhibiting oxidative stress-induced neuronal apoptosis and tauopathy. Acta Pharmacol Sin 2017;38:1104-19.
20. Zheng Q, Zheng X, Zhang L, Luo H, Qian L, Fu X, et al. The neuronspecific protein TMEM59L mediates oxidative stress-induced cell death. Mol Neurobiol 2017;54:4189-200.
21. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, et al. Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 1999;97:395-406.
22. Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 2007;27:1129-38.
23. Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000;5:415-8.
24. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44-84.
25. Niizuma K, Endo H, Chan PH. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 2009;109:133-8.
26. Qi S, Guo L, Yan S, Lee RJ, Yu S, Chen S. Hypocrellin A-based photodynamic action induces apoptosis in A549 cells through ROSmediated mitochondrial signaling pathway. Acta Pharm Sin B 2019; 9:279-93.
27. Colton CA, Colton JS, Gilbert DL. Changes in synaptic transmission produced by hydrogen peroxide. J Free Radic Biol Med 1986;2: 141-8.
28. Colton CA, Fagni L, Gilbert D. The action of hydrogen peroxide on paired pulse and long-term potentiation in the hippocampus. Free Radical Bio Med 1989;7:3-8.
29. Pellmar TC, Hollinden GE, Sarvey JM. Free radicals accelerate the decay of long-term potentiation in field CA1 of Guinea-pig hippocampus. Neuroscience 1991;44:353-9.
30. Avshalumov MV, Chen BT, Rice ME. Mechanisms underlying H2O2-mediated inhibition of synaptic transmission in rat hippocampal slices. Brain Res 2000;882:86-94.
31. Cai F, Wang F, Lin FK, Liu C, Ma LQ, Liu J, et al. Redox modulation of long-term potentiation in the hippocampus via regulation of the glycogen synthase kinase-3beta pathway. Free Radical Bio Med 2008;45:964-70.
32. Yang J, Hu ZL, Jiang B, Ni L, Jin Y, Chen JG, et al. Effect of chloramine-T on long-term potentiation at synapses between perforant path and dentate gyrus in hippocampus of rats in vivo. Neurotoxicology 2011;32:199-205.
33. Yang YJ, Wu PF, Long LH, Yu DF, Wu WN, Hu ZL, et al. Reversal of aging-associated hippocampal synaptic plasticity deficits by reductants via regulation of thiol redox and NMDA receptor function. Aging Cell 2010;9:709-21.
34. Wang W, Wang F, Yang YJ, Hu ZL, Long LH, Fu H, et al. The flavonoid baicalein promotes NMDA receptor-dependent long-term potentiation and enhances memory. Br J Pharmacol 2011;162: 1364-79.
35. Wang W, Zheng LL, Wang F, Hu ZL, Wu WN, Gu J, et al. Tanshinone IIA attenuates neuronal damage and the impairment of longterm potentiation induced by hydrogen peroxide. J Ethnopharmacol 2011;134:147-55.
36. Maalouf M, Rho JM. Oxidative impairment of hippocampal longterm potentiation involves activation of protein phosphatase 2A and is prevented by ketone bodies. J Neurosci Res 2008;86: 3322-30.
37. Bonett RM, Trujano-Alvarez AL, Williams MJ, Timpe EK. Biogeography and body size shuffling of aquatic salamander communities on a shifting refuge. Proc Biol Sci 2013;280:20130200.
38. Robillard JM, Gordon GR, Choi HB, Christie BR, MacVicar BA. Glutathione restores the mechanism of synaptic plasticity in aged mice to that of the adult. PLoS One 2011;6:e20676.
39. Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47-95.
40. Knapp LT, Klann E. Role of reactive oxygen species in hippocampal long-term potentiation: Contributory or inhibitory?. J Neurosci Res 2002;70:1-7.
41. Kamsler A, Segal M. Hydrogen peroxide modulation of synaptic plasticity. J Neurosci 2003;23:269-76.
42. Knapp LT, Klann E. Potentiation of hippocampal synaptic transmission by superoxide requires the oxidative activation of protein kinase C. J Neurosci 2002;22:674-83.
43. Huddleston AT, Tang W, Takeshima H, Hamilton SL, Klann E. Superoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK. J Neurophysiol 2008;99: 1565-71.
44. Klann E. Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1. J Neurophysiol 1998;80: 452-7.
45. Hu D, Serrano F, Oury TD, Klann E. Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase. J Neurosci 2006;26:3933-41.
46. Kishida KT, Hoeffer CA, Hu D, Pao M, Holland SM, Klann E. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol 2006;26: 5908-20.
47. Ma T, Hoeffer CA, Wong H, Massaad CA, Zhou P, Iadecola C, et al. Amyloid beta-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide. J Neurosci 2011;31:5589-95.
48. Dumont M, Wille E, Stack C, Calingasan NY, Beal MF, Lin MT. Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer’s disease. Faseb J 2009;23: 2459-66.
49. Potier B, Poindessous-Jazat F, Dutar P, Billard JM. NMDA receptor activation in the aged rat hippocampus. Exp Gerontol 2000;35: 1185-99.
50. Clayton DA, Grosshans DR, Browning MD. Aging and surface expression of hippocampal NMDA receptors. J Biol Chem 2002;277: 14367-9.
51. Barnes CA, Rao G, Shen J. Age-related decrease in the N-methyl-D-aspartateR-mediated excitatory postsynaptic potential in hippocampal region CA1. Neurobiol Aging 1997;18:445-52.
52. Shankar S, Teyler TJ, Robbins N. Aging differentially alters forms of long-term potentiation in rat hippocampal area CA1. J Neurophysiol 1998;79:334-41.
53. Boric K, Munoz P, Gallagher M, Kirkwood A. Potential adaptive function for altered long-term potentiation mechanisms in aging hippocampus. J Neurosci 2008;28:8034-9.
54. Turpin FR, Potier B, Dulong JR, Sinet PM, Alliot J, Oliet SH, et al. Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function. Neurobiol Aging 2011;32: 1495-504.
55. Omerovic A, Chen SJ, Leonard JP, Kelso SR. Subunit-specific redox modulation of NMDA receptors expressed in Xenopus oocytes. J Recept Signal Transduct Res 1995;15:811-27.
56. Kumar A, Foster TC. Linking redox regulation of NMDAR synaptic function to cognitive decline during aging. J Neurosci 2013;33: 15710-5.
57. Haxaire C, Turpin FR, Potier B, Kervern M, Sinet PM, Barbanel G, et al. Reversal of age-related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting D-serine-dependent NMDA receptor activation. Aging Cell 2012;11:336-44.
58. Kohr G, Eckardt S, Luddens H, Monyer H, Seeburg PH. NMDA receptor channels: Subunit-specific potentiation by reducing agents. Neuron 1994;12:1031-40.
59. Silva AJ, Paylor R, Wehner JM, Tonegawa S. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 1992;257:206-11.
60. Bodhinathan K, Kumar A, Foster TC. Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulindependent protein kinase II. J Neurosci 2010;30:1914-24.
61. Maiese K, Chong ZZ. Insights into oxidative stress and potential novel therapeutic targets for Alzheimer disease. Restor Neurol Neurosci 2004;22:87-104.
62. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, et al. Oxidative damage linked to neurodegeneration by selective alphasynuclein nitration in synucleinopathy lesions. Science 2000;290: 985-9.
63. Murray CA, Lynch MA. Dietary supplementation with vitamin E reverses the age-related deficit in long term potentiation in dentate gyrus. J Biol Chem 1998;273:12161-8.
64. Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 2002;32:1050-60.
65. De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, et al. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 2007;282: 11590-601.
66. Kim SU, Jin MH, Kim YS, Lee SH, Cho YS, Cho KJ, et al. Peroxiredoxin II preserves cognitive function against age-linked hippocampal oxidative damage. Neurobiol Aging 2011;32:1054-68.
67. Yu Q, Wang Y, Du F, Yan S, Hu G, Origlia N, et al. Overexpression of endophilin A1 exacerbates synaptic alterations in a mouse model of Alzheimer’s disease. Nat Commun 2018;9:2968.
68. Li H, Liu Y, Lin LT, Wang XR, Du SQ, Yan CQ, et al. Acupuncture reversed hippocampal mitochondrial dysfunction in vascular dementia rats. Neurochem Int 2016;92:35-42.
69. Liu DD, Yuan X, Chu SF, Chen C, Ren Q, Luo P, et al. CZ-7, a new derivative of claulansine F, ameliorates 2VO-induced vascular dementia in rats through a Nrf2-mediated antioxidant responses. Acta Pharmacol Sin 2019;40:425-40.
70. Komatsu T, Lee MCI, Miyagi A, Shoji H, Yoshino F, Maehata Y, et al. Reactive oxygen species generation in gingival fibroblasts of Down syndrome patients detected by electron spin resonance spectroscopy. Redox Rep 2006;11:71-7.
71. Ko JW, Lim SY, Chung KC, Lim JW, Kim H. Reactive oxygen species mediate IL-8 expression in Down syndrome candidate region-1-overexpressed cells. Int J Biochem Cell Biol 2014;55:164-70.
72. Rueda N, Florez J, Martinez-Cue C. Mouse models of down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012;2012:584071.
73. Costa AC, Grybko MJ. Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse: A model of Down syndrome. Neurosci Lett 2005;382:317-22.
74. Corrales A, Vidal R, Garcia S, Vidal V, Martinez P, Garcia E, et al. Chronic melatonin treatment rescues electrophysiological and neuromorphological deficits in a mouse model of Down syndrome. J Pineal Res 2014;56:51-61.
75. Watson JB, Khorasani H, Persson A, Huang KP, Huang FL, O’Dell TJ. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: Coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. J Neurosci Res 2002;70:298-308.
76. Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. Nature 2010;464:529-35.
77. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, et al. Gene regulation and DNA damage in the ageing human brain. Nature 2004;429: 883-91.
78. Liu R, Liu IY, Bi X, Thompson RF, Doctrow SR, Malfroy B, et al. Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci U S A 2003;100:8526-31.
79. Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM, et al. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: Current strategies and future perspectives. Acta Pharm Sin B 2018;8:862-80.
80. Wang J, Huang L, Cheng C, Li G, Xie J, Shen M, et al. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm Sin B 2019;9:335-50.
81. Liu Z, Wang W, Feng N, Wang L, Shi J, Wang X. Parishin C’s prevention of Abeta 1-42-induced inhibition of long-term potentiation is related to NMDA receptors. Acta Pharm Sin B 2016;6: 189-97.
82. Lei Y, Fu W, Chen J, Xiong C, Wu G, Wei H, et al. Neuroprotective effects of abacopterin E from Abacopteris penangiana against oxidative stress-induced neurotoxicity. J Ethnopharmacol 2011;134: 275-80.
83. Maalouf M, Rho JM. Oxidative impairment of hippocampal longterm potentiation involves activation of protein phosphatase 2A and is prevented by ketone bodies. J Neurosci Res 2008;86:3322-30.
84. Karamian R, Komaki A, Salehi I, Tahmasebi L, Komaki H, Shahidi S, et al. Vitamin C reverses lead-induced deficits in hippocampal synaptic plasticity in rats. Brain Res Bull 2015;116:7-15.
85. Salehi I, Karamian R, Komaki A, Tahmasebi L, Taheri M, Nazari M, et al. Effects of vitamin E on lead-induced impairments in hippocampal synaptic plasticity. Brain Res 2015;1629:270-81.
86. Wang YF, Li CC, Cai JX. Aniracetam attenuates H2O2-induced deficiency of neuron viability, mitochondria potential and hippocampal long-term potentiation of mice in vitro. Neurosci Bull 2006; 22:274-80.
87. Yan SK, Chang T, Wang H, Wu L, Wang R, Meng QH. Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochem Bioph Res Co 2006;351: 485-91.
88. Chang T, Untereiner A, Liu J, Wu L. Interaction of methylglyoxal and hydrogen sulfide in rat vascular smooth muscle cells. Antioxidants Redox Signal 2010;12:1093-100.
89. Hourihan JM, Kenna JG, Hayes JD. The gasotransmitter hydrogen sulfide induces NRF2-target genes by inactivating the KEAP1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between Cys-226 and Cys-613. Antioxidants Redox Signal 2013;19:465-81.
90. Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS. Hydrogen sulfide in the mammalian cardiovascular system. Antioxidants Redox Signal 2012;17:141-85.
91. Li YL, Wu PF, Chen JG, Wang S, Han QQ, Li D, et al. Activitydependent sulfhydration signal controls N-methyl-D-aspartate subtype glutamate receptor-dependent synaptic plasticity via increasing D-serine availability. Antioxidants Redox Signal 2017; 27:398-414.
92. Luo H, Wu PF, Han QQ, Cao Y, Deng SL, Wang J, et al. Reactive sulfur species emerge as gliotransmitters to support memory via sulfuration-dependent gating of NR2A-containing N-methyl-Daspartate subtype glutamate receptor function. Antioxidants Redox Signal 2019;30:1880-99.
93. Deneke SM. Thiol-based antioxidants. Curr Top Cell Regul 2000;36: 151-80.
94. Kr zel A, Lesniak W, Jezowska-Bojczuk M, Mlynarz P, Brasun J, Kozlowski H, et al. Coordination of heavy metals by dithiothreitol, a commonly used thiol group protectant. J Inorg Biochem 2001;84: 77-88.
95. Cho JH, Askwith CC. Potentiation of acid-sensing ion channels by sulfhydryl compounds. Am J Physiol Cell Physiol 2007;292: C2161-74.
96. Amato A, Connolly CN, Moss SJ, Smart TG. Modulation of neuronal and recombinant GABAA receptors by redox reagents. J Physiol 1999;517:35-50.
97. Ullian ME, Beck CN, Walker LP, Fitzgibbon WR, Morinelli TA. Thiol antioxidants regulate angiotensin II AT1 and arginine vasopressin V1 receptor functions differently in vascular smooth muscle cells. Am J Hypertens 2009;22:221-7.
98. Arakawa M, Ito Y. N-Acetylcysteine and neurodegenerative diseases: Basic and clinical pharmacology. Cerebellum 2007;6:308-14.
99. Pocernich CB, Butterfield DA. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta 2012; 1822:625-30.
100. Aizenman E, Lipton SA, Loring RH. Selective modulation of NMDA responses by reduction and oxidation. Neuron 1989;2:1257-63.
101. Pan ZH, Bahring R, Grantyn R, Lipton SA. Differential modulation by sulfhydryl redox agents and glutathione of GABA- and glycineevoked currents in rat retinal ganglion cells. J Neurosci 1995;15: 1384-91.
102. Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 1993; 364:626-32.
103. Sucher NJ, Lipton SA. Redox modulatory site of the NMDA receptor-channel complex: Regulation by oxidized glutathione. J Neurosci Res 1991;30:582-91.
104. Wang Y, Guan XL, Wu PF, Wang CM, Cao H, Li L, et al. Multifunctional mercapto-tacrine derivatives for treatment of age-related neurodegenerative diseases. J Med Chem 2012;55:3588-92.
105. Herin GA, Du S, Aizenman E. The neuroprotective agent ebselen modifies NMDA receptor function via the redox modulatory site. J Neurochem 2001;78:1307-14.
106. Lei S, McBain CJ. Two Loci of expression for long-term depression at hippocampal mossy fiber-interneuron synapses. J Neurosci 2004; 24:2112-21.
107. Yu SY, Wu DC, Liu L, Ge Y, Wang YT. Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala. J Neurochem 2008;106:889-99.
108. Citri A, Malenka RC. Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology 2008;33:18-41.
109. Han J, Wu P, Wang F, Chen J. S-Palmitoylation regulates AMPA receptors trafficking and function: A novel insight into synaptic regulation and therapeutics. Acta Pharm Sin B 2015;5:1-7.
110. Guan X, Fierke CA. Understanding protein palmitoylation: Biological significance and enzymology. Sci China Chem 2011;54:1888-97.
111. Yang G, Xiong W, Kojic L, Cynader MS. Subunit-selective palmitoylation regulates the intracellular trafficking of AMPA receptor. Eur J Neurosci 2009;30:35-46.
112. Hayashi T, Rumbaugh G, Huganir RL. Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites. Neuron 2005;47:709-23.
113. Lin DT, Makino Y, Sharma K, Hayashi T, Neve R, Takamiya K, et al. Regulation of AMPA receptor extrasynaptic insertion by 4.1N, phosphorylation and palmitoylation. Nat Neurosci 2009;12:879-87.
114. Van Dolah DK, Mao LM, Shaffer C, Guo ML, Fibuch EE, Chu XP, et al. Reversible palmitoylation regulates surface stability of AMPA receptors in the nucleus accumbens in response to cocaine in vivo. Biol Psychiatr 2011;69:1035-42.
115. Han J, Zhang H, Wang S, Zhou J, Luo Y, Long LH, et al. Potentiation of surface stability of AMPA receptors by sulfhydryl compounds: A redox-independent effect by disrupting palmitoylation. Neurochem Res 2016;41:2890-903.
116. Liu JM, Wu PF, Rao J, Zhou J, Shen ZC, Luo H, et al. ST09, a novel thioester derivative of tacrine, alleviates cognitive deficits and enhances glucose metabolism in vascular dementia rats. CNS Neurosci Ther 2016;22:220-9.
Similar articles:
1.Jiabing Wang, Lili Huang, Chanchan Cheng, Ge Li, Jingwen Xie, Mengya Shen, Qian Chen, Wulan Li, Wenfei He, Peihong Qiu, Jianzhang Wu.Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents[J]. Acta Pharmaceutica Sinica B, 2019,9(2): 335-350
Similar articles: