Original articles
Fanxun Zeng, Shiliang Li, Guantian Yang, Yating Luo, Tiantian Qi, Yingfan Liang, Tingyuan Yang, Letian Zhang, Rui Wang, Lili Zhu, Honglin Li, Xiaoyong Xu. Design, synthesis, molecular modeling, and biological evaluation of acrylamide derivatives as potent inhibitors of human dihydroorotate dehydrogenase for the treatment of rheumatoid arthritis[J]. Acta Pharmaceutica Sinica B, 2021, 11(3): 795-809

Design, synthesis, molecular modeling, and biological evaluation of acrylamide derivatives as potent inhibitors of human dihydroorotate dehydrogenase for the treatment of rheumatoid arthritis
Fanxun Zenga, Shiliang Lib, Guantian Yanga, Yating Luob, Tiantian Qib, Yingfan Liangb, Tingyuan Yangb, Letian Zhanga, Rui Wangb, Lili Zhub, Honglin Lib, Xiaoyong Xua
a Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China;
b Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
Abstract:
Human dihydroorotate dehydrogenase (DHODH) is a viable target for the development of therapeutics to treat cancer and immunological diseases, such as rheumatoid arthritis (RA), psoriasis and multiple sclerosis (MS). Herein, a series of acrylamide-based novel DHODH inhibitors as potential RA treatment agents were designed and synthesized. 2-Acrylamidobenzoic acid analog 11 was identified as the lead compound for structure—activity relationship (SAR) studies. The replacement of the phenyl group with naphthyl moieties improved inhibitory activity significantly to double-digit nanomolar range. Further structure optimization revealed that an acrylamide with small hydrophobic groups (Me, Cl or Br) at the 2-position was preferred. Moreover, adding a fluoro atom at the 5-position of the benzoic acid enhanced the potency. The optimization efforts led to potent compounds 42 and 53-55 with IC50 values of 41, 44, 32, and 42 nmol/L, respectively. The most potent compound 54 also displayed favorable pharmacokinetic (PK) profiles and encouraging in vivo anti-arthritic effects in a dose-dependent manner.
Key words:    DHODH    De novo pyrimidine biosynthesis    DHODH inhibitors    Acrylamide derivatives    Rheumatoid arthritis   
Received: 2020-07-01     Revised: 2020-09-17
DOI: 10.1016/j.apsb.2020.10.008
Funds: This work was supported by the National Key Research and Development Program (2017YFD0200505 to Xiaoyong Xu, 2016YFA0502304 to Honglin Li, China); the National Natural Science Foundation of China (81825020 to Honglin Li, 81803437 to Shiliang Li); the National Science & Technology Major Project “Key New Drug Creation and Manufacturing Program” (2018ZX09711002, China); the Fundamental Research Funds for the Central Universities; and the Shanghai Foundation of Science and Technology (15431902100 to Xiaoyong Xu). Shiliang Li is also sponsored by Shanghai Sailing Program (No. 18YF1405100, China). Honglin Li is also sponsored by the National Program for Special Supports of Eminent Professionals and National Program for Support of Top-Notch Young Professionals, China. We thank Dr. Wei Wang for English proofreading of this manuscript.
Corresponding author: Rui Wang, Lili Zhu, Honglin Li, Xiaoyong Xu     Email:ruiwang@ecust.edu.cn;zhulfl@ecust.edu.cn;hlli@ecust.edu.cn;xyxu@ecust.edu.cn
Author description:
Service
PDF(KB) Free
Print
0
Authors
Fanxun Zeng
Shiliang Li
Guantian Yang
Yating Luo
Tiantian Qi
Yingfan Liang
Tingyuan Yang
Letian Zhang
Rui Wang
Lili Zhu
Honglin Li
Xiaoyong Xu

References:
1. Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity 2017;46:183-96.
2. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, et al. 2010 Rheumatoid arthritis classification criteria: an American college of rheumatology/European League against rheumatism collaborative initiative. Arthritis Rheum 2010;62:2569-81.
3. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003; 423:356-61.
4. Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part I. Arthritis Rheum 2008;58:15-25.
5. McInnes IB, Thompson L, Giles JT, Bathon JM, Salmon JE, Beaulieu AD, et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann Rheum Dis 2015;74:694-702.
6. Ziarko M, Siemiatkowska K, Sienski M, Samborski W, Samborska J, Mojs E. Mental health and rheumatoid arthritis: toward understanding the emotional status of people with chronic disease. BioMed Res Int 2019;2019. 1473925.
7. Takeuchi T. Biomarkers as a treatment guide in rheumatoid arthritis. Clin Immunol 2018;186:59-62.
8. Lamichhane D, Collins C, Constantinescu F, Walitt B, Pettinger M, Parks C, et al. Coffee and tea consumption in relation to risk of rheumatoid arthritis in the women’s health initiative observational cohort. J Clin Rheumatol 2019;25:127-32.
9. Abhishek N, Parveen S, Vishnupriya V, Gayathri R.Treatment models for rheumatoid arthritis—a review. J Pharmaceut Sci Res 2016;8:520-4.
10. Bullock J, Rizvi SAA, Saleh AM, Ahmed SS, Do DP, Ansari RA, et al. Rheumatoid arthritis: a brief overview of the treatment. Med Princ Pract 2018;27:501-7.
11. van Vollenhoven RF. Treatment of rheumatoid arthritis: state of the art
2009. Nat Rev Rheumatol 2009;5:531-41.
12. Singh JA, Saag KG, Bridges SL, Akl EA, Bannuru RR, Sullivan MC, et al. 2015 American college of rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheum 2016;68:1-26.
13. Ramiro S, Sepriano A, Chatzidionysiou K, Nam JL, Smolen JS, van der Heijde D, et al. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2016 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis 2017;76:1101-36.
14. Clark JD, Flanagan ME, Telliez JB. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases: miniperspective. J Med Chem 2014;57:5023-38.
15. Lou Y, Han X, Kuglstatter A, Kondru RK, Sweeney ZK, Soth M, et al. Structure-based drug design of RN486, a potent and selective Bruton’s tyrosine kinase (BTK) inhibitor, for the treatment of rheumatoid arthritis. J Med Chem 2014;58:512-6.
16. Vyas VK, Ghate M. Recent developments in the medicinal chemistry and therapeutic potential of dihydroorotate dehydrogenase (DHODH) inhibitors. Mini Rev Med Chem 2011;11:1039-55.
17. Nørager S, Jensen KF, Björnberg O, Larsen S. E. coli Dihydroorotate dehydrogenase reveals structural and functional distinctions between different classes of dihydroorotate dehydrogenases. Structure 2002;10: 1211-23.
18. Krungkrai J. Purification, characterization and localization of mitochondrial dihydroorotate dehydrogenase in Plasmodium falciparum, human malaria parasite. Biochim Biophys Acta 1995;1243:351-60.
19. Jiang W, Locke G, Harpel MR, Copeland RA, Marcinkeviciene J. Role of Lys 100 in human dihydroorotate dehydrogenase: mutagenesis studies and chemical rescue by external amines. Biochemistry 2000; 39:7990-7.
20. Munier-Lehmann H, Vidalain PO, Tangy F, Janin YL. On dihydroorotate dehydrogenases and their inhibitors and uses. J Med Chem 2013;56:3148-67.
21. Löffler M, Fairbanks LD, Zameitat E, Marinaki AM, Simmonds HA. Pyrimidine pathways in health and disease. Trends Mol Med 2005;11: 430-7.
22. Li L, Ng SR, Colón CI, Drapkin BJ, Hsu PP, Li Z, et al. Identification of DHODH as a therapeutic target in small cell lung cancer. Sci Transl Med 2019;11:eaaw7852.
23. Christian S, Merz C, Evans L, Gradl S, Seidel H, Friberg A, et al. The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies. Leukemia 2019;33:2403-15.
24. Alcorn N, Saunders S, Madhok R. Benefit-risk assessment of leflunomide. Drug Saf 2009;32:1123-34.
25. White RM, Cech J, Ratanasirintrawoot S, Lin CY, Rahl PB, Burke CJ, et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 2011;471:518-22.
26. Silva HT, Morris RE. Leflunomide and malononitrilamides. Am J Med Sci 1997;313:289-301.
27. Makowka L, Sher LS, Cramer DV. The development of brequinar as an immunosuppressive drug for transplantation. Immunol Rev 1993; 136:51-70.
28. Maroun J, Ruckdeschel J, Natale R, Morgan R, Dallaire B, Sisk R, et al. Multicenter phase II study of brequinar sodium in patients with advanced lung cancer. Canc Chemother Pharmacol 1993;32:64-6.29. Gummert JF, Ikonen T, Morris RE. Newer immunosuppressive drugs: a review. J Am Soc Nephrol 1999;10:1366-80.
30. Chan A, de Seze J, Comabella M. Teriflunomide in patients with relapsing—remitting forms of multiple sclerosis. CNS Drugs 2016;30: 41-51.
31. Díaz-Borjón A. Guidelines for the use of conventional and newer disease-modifying antirheumatic drugs in elderly patients with rheumatoid arthritis. Drugs Aging 2009;26:273-93.
32. Cody R, Stewart D, DeForni M, Moore M, Dallaire B, Azarnia N, et al. Multicenter phase II study of brequinar sodium in patients with advanced breast cancer. Am J Clin Oncol 1993;16:526-8.
33. Dexter DL, Hesson DP, Ardecky RJ, Rao GV, Tippett DL, Dusak BA, et al. Activity of a novel 4-quinolinecarboxylic acid, NSC 368390 [6-fluoro-2-(2’-fluoro-1,1’-biphenyl-4-yl)-3-methyl-4-quinolinecarboxylic acid sodium salt], against experimental tumors. Canc Res 1985;45:5563-8.
34. Cramer DV, Chapman FA, Jaffee BD, Jones EA, Knoop M, HrehaEiras G, et al. The effect of a new immunosuppressive drug, brequinar sodium, on heart, liver, and kidney allograft rejection in the rat. Transplantation 1992;53:303-7.
35. Herrlinger K, Diculescu M, Fellermann K, Hartmann H, Howaldt S, Nikolov R, et al. Efficacy, safety and tolerability of vidofludimus in patients with inflammatory bowel disease: the ENTRANCE study. J Crohn’s Colitis 2013;7:636-43.
36. Rusai K, Schmaderer C, Baumann M, Chmielewski S, Prókai Á, Kis E, et al. Immunosuppression with 4SC-101, a novel inhibitor of dihydroorotate dehydrogenase, in a rat model of renal transplantation. Transplantation 2012;93:1101-7.
37. Muehler A, Peelen E, Kohlhof H, Groppel M, Vitt D. Vidofludimus calcium, a next generation DHODH inhibitor for the treatment of relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2020; 43:102129.
38. Fitzpatrick LR, Small JS, Doblhofer R, Ammendola A. Vidofludimus inhibits colonic interleukin-17 and improves hapten-induced colitis in rats by a unique dual mode of action. J Pharmacol Exp Therapeut 2012;342:850-60.
39. Kulkarni OP, Sayyed SG, Kantner C, Ryu M, Schnurr M, Sárdy M, et al. 4SC-101, a novel small molecule dihydroorotate dehydrogenase inhibitor, suppresses systemic lupus erythematosus in MRL-(Fas) lpr mice. Am J Pathol 2010;176:2840-7.
40. Fitzpatrick LR, Deml L, Hofmann C, Small JS, Groeppel M, Hamm S, et al. 4SC-101, a novel immunosuppressive drug, inhibits IL-17 and attenuates colitis in two murine models of inflammatory bowel disease. Inflamm Bowel Dis 2010;16:1763-77.
41. Sykes DB, Kfoury YS, Mercier FE, Wawer MJ, Law JM, Haynes MK, et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 2016;167: 171-86.
42. Diao Y, Lu W, Jin H, Zhu J, Han L, Xu M, et al. Discovery of diverse human dihydroorotate dehydrogenase inhibitors as immunosuppressive agents by structure-based virtual screening. J Med Chem 2012;55: 8341-9.
43. Li S, Luan G, Ren X, Song W, Xu L, Xu M, et al. Rational design of benzylidenehydrazinyl-substituted thiazole derivatives as potent inhibitors of human dihydroorotate dehydrogenase with in vivo antiarthritic activity. Sci Rep 2015;5:14836-55.
44. Zhu J, Han L, Diao Y, Ren X, Xu M, Xu L, et al. Design, synthesis, Xray crystallographic analysis, and biological evaluation of thiazole derivatives as potent and selective inhibitors of human dihydroorotate dehydrogenase. J Med Chem 2015;58:1123-39.
45. Song W, Li S, Tong Y, Wang J, Quan L, Chen Z, et al. Structure-based design of potent human dihydroorotate dehydrogenase inhibitors as anticancer agents. MedChemComm 2016;7:1441-8.
46. Madak JT, Cuthbertson CR, Miyata Y, Tamura S, Petrunak EM, Stuckey JA, et al. Design, synthesis, and biological evaluation of 4-quinoline carboxylic acids as inhibitors of dihydroorotate dehydrogenase. J Med Chem 2018;61:5162-86.
47. Sainas S, Pippione AC, Lupino E, Giorgis M, Circosta P, Gaidano V, et al. Targeting myeloid differentiation using potent 2-hydroxypyrazolo [1,5-a] pyridine scaffold-based human dihydroorotate dehydrogenase inhibitors. J Med Chem 2018;61:6034-55.
48. Lolli ML, Sainas S, Pippione AC, Giorgis M, Boschi D, Dosio F. Use of human dihydroorotate dehydrogenase (hDHODH) inhibitors in autoimmune diseases and new perspectives in cancer therapy. Recent Pat Anti-Cancer Drug Discov 2018;13:86-105.
49. Xiong R, Zhang L, Li S, Sun Y, Ding M, Wang Y, et al. Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARSCoV-2. Protein Cell 2020;11:723-39.
50. Brown KK, Spinelli JB, Asara JM, Toker A. Adaptive reprogramming of de novo pyrimidine synthesis is a metabolic vulnerability in triplenegative breast cancer. Canc Discov 2017;7:391-9.
51. Mathur D, Stratikopoulos E, Ozturk S, Steinbach N, Pegno S, Schoenfeld S, et al. PTEN regulates glutamine flux to pyrimidine synthesis and sensitivity to dihydroorotate dehydrogenase inhibition. Canc Discov 2017;7:380-90.
52. Koundinya M, Sudhalter J, Courjaud A, Lionne B, Touyer G, Bonnet L, et al. Dependence on the pyrimidine biosynthetic enzyme DHODH is a synthetic lethal vulnerability in mutant KRAS-driven cancers. Cell Chem Biol 2018;25:705-17.
53. Bajzikova M, Kovarova J, Coelho AR, Boukalova S, Oh S, Rohlenova K, et al. Reactivation of dihydroorotate dehydrogenasedriven pyrimidine biosynthesis restores tumor growth of respirationdeficient cancer cells. Cell Metabol 2019;29:399-416.
54. Hosseini M, Dousset L, Mahfouf W, Serrano-Sanchez M, RedonnetVernhet I, Mesli S, et al. Energy metabolism rewiring precedes UVB-induced primary skin tumor formation. Cell Rep 2018;23: 3621-34.
55. Yi J, He Z, Xu S, Feng S. Efficacy and safety of leflunomide in IgA nephropathy: a systematic review and meta-analysis. Int Urol Nephrol 2019;51:1987-98.
56. Liu S, Neidhardt EA, Grossman TH, Ocain T, Clardy J. Structures of human dihydroorotate dehydrogenase in complex with antiproliferative agents. Structure 2000;8:25-33.
57. Fritzson I, Svensson B, Al-Karadaghi S, Walse B, Wellmar U, Nilsson UJ, et al. Inhibition of human DHODH by 4-hydroxycoumarins, fenamic acids, and N-(alkylcarbonyl)anthranilic acids identified by structureguided fragment selection. ChemMedChem 2010;5:608-17.
58. Zeng F, Qi T, Li C, Li T, Li H, Li S, et al. Synthesis, structureeactivity relationship and binding mode analysis of 4-thiazolidinone derivatives as novel inhibitors of human dihydroorotate dehydrogenase. MedChemComm 2017;8:1297-302.
59. Heikkila T, Thirumalairajan S, Davies M, Parsons MR, McConkey AG, Fishwick CW, et al. The first de novo designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. Bioorg Med Chem Lett 2006;16:88-92.
60. Brand DD, Latham KA, Rosloniec EF. Collagen-induced arthritis. Nat Protoc 2007;2:1269-75.
61. Yue R, Zhao L, Hu Y, Jiang P, Wang S, Xiang L, et al. Rapid-resolution liquid chromatography TOF-MS for urine metabolomic analysis of collagen-induced arthritis in rats and its applications. J Ethnopharmacol 2013;145:465-75.
62. Rosillo MÁ, Alcaraz MJ, Sánchez-Hidalgo M, Fernández-Bolaños JG, Alarcón-De-La-Lastra C, Ferrándiz ML. Anti-inflammatory and joint protective effects of extra-virgin olive-oil polyphenol extract in experimental arthritis. J Nutr Biochem 2014;25:1275-81.
Similar articles: