Reviews
Iara Maíra de Oliveira Viana, Sabrina Roussel, Joan Defrêne, Eliana Martins Lima, Frédéric Barabé, Nicolas Bertrand. Innate and adaptive immune responses toward nanomedicines[J]. Acta Pharmaceutica Sinica B, 2021, 11(4): 852-870

Innate and adaptive immune responses toward nanomedicines
Iara Maíra de Oliveira Vianaa,b, Sabrina Rousselb, Joan Defrênec, Eliana Martins Limaa, Frédéric Barabéc, Nicolas Bertrandb
a Laboratory of Pharmaceutical Technology(FarmaTec), Federal University of Goiás, Goiânia 74605-220, Brazil;
b Faculty of Pharmacy, Université Laval and CHU de Québec-Université Laval Research Center, Québec G1V 4G2, Canada;
c Department of Medicine, Faculty of Medicine, Université Laval and CHU de Québec-Université Laval Research Center, Québec G1V 4G2, Canada
Abstract:
Since the commercialization of the first liposomes used for drug delivery, Doxil/Caelyx® and Myocet®, tremendous progress has been made in understanding interactions between nanomedicines and biological systems. Fundamental work at the interface of engineering and medicine has allowed nanomedicines to deliver therapeutic small molecules and nucleic acids more efficiently. While nanomedicines are used in oncology for immunotherapy or to deliver combinations of cytotoxics, the clinical successes of gene silencing approaches like patisiran lipid complexes (Onpattro®) have paved the way for a variety of therapies beyond cancer. In parallel, the global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has highlighted the potential of mRNA vaccines to develop immunization strategies at unprecedented speed. To rationally design therapeutic and vaccines, chemists, materials scientists, and drug delivery experts need to better understand how nanotechnologies interact with the immune system. This review presents a comprehensive overview of the innate and adaptative immune systems and emphasizes the intricate mechanisms through which nanomedicines interact with these biological functions.
Key words:    Cancer immunotherapy    mRNA vaccine    Complement activation    Macrophage    In vivo clearance    Anti-PEG antibody    Nanoparticle    mRNA-1273    BNT162b2    Immunology   
Received: 2020-12-06     Revised: 2021-01-04
DOI: 10.1016/j.apsb.2021.02.022
Funds: We are grateful for the financial support of the Canadian agencies Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and the Fondation du CHU de Quebec. NB is a Junior 1 Research Scholar from the Fonds de Recherche du Québec-Santé.
Corresponding author: Nicolas Bertrand, nicolas.bertrand@pha.ulaval.ca     Email:nicolas.bertrand@pha.ulaval.ca
Author description:
Service
PDF(KB) Free
Print
0
Authors
Iara Maíra de Oliveira Viana
Sabrina Roussel
Joan Defrêne
Eliana Martins Lima
Frédéric Barabé
Nicolas Bertrand

References:
1. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nanobiointerface. Nat Mater 2009;8:543-57.
2. Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol 2020;20:375-88.
3. Poon IKH, Lucas CD, Rossi AG, Ravichandran KS. Apoptotic cell clearance:basic biology and therapeutic potential. Nat Rev Immunol 2014;14. l66-80.
4. Belkaid Y, Hand T. Role of the microbiota in immunity and inflammation. Cell 2014;157:121-41.
5. Lacy P, Stow JL. Cytokine release from innate immune cells:association with diverse membrane trafficking pathways. Blood 2011; 118:9-18.
6. Murphy K, Travers P, Walport M, Janeway C. Janeway's immunobiology. 8th ed. New York:Garland Science; 2012.
7. Ab Kadir R, Ariffin SHZ, Wahab RMA, Senafi S. Molecular characterisation of human peripheral blood stem cells. South Afr J Sci 2012;108.
8. Rheinländer A, Schraven B, Bommhardt U. CD45 in human physiology and clinical medicine. Immunol Lett 2018;196:22-32.
9. Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999;17:593-623.
10. Flannagan RS, Jaumouillé V, Grinstein S. The cell biology of phagocytosis. Annu Rev Pathol 2012;7:61-98.
11. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015;4:343-53.
12. Borisenko GG, Matsura T, Liu SX, Tyurin VA, Jianfei J, Serinkan FB, et al. Macrophage recognition of externalized phosphatidylserine and phagocytosis of apoptotic Jurkat cells-existence of a threshold. Arch Biochem Biophys 2003;413:41-52.
13. Harrison JE, Schultz J. Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 1976;251:1371-4.
14. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 2008;25:1815-21.
15. Cannon GJ, Swanson JA. The macrophage capacity for phagocytosis. J Cell Sci 1992;101:907-13.
16. Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 2006;103:4930-4.
17. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors. Nat Immunol 2010;11:373-84.
18. Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol 2014;9:181-218.
19. Aoki A, Hirahara K, Kiuchi M, Nakayama T. Eosinophils:cells known for over 140 years with broad and new functions. Allergol Int 2020;70:3-8.
20. Rosenberg HF, Dyer KD, Foster PS. Eosinophils:changing perspectives in health and disease. Nat Rev Immunol 2013;13:9-22.
21. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science 2004;303:1532-5.
22. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007;13:463-9.
23. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010;107:15880-5.
24. Adams NM, Grassmann S, Sun JC. Clonal expansion of innate and adaptive lymphocytes. Nat Rev Immunol 2020;11:694-707.
25. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity?. The example of natural killer cells. Science 2011;331:44-9.
26. Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, NematGorgani N, Dogan OC, et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med 2013;5:208ra145.
27. Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 2010;10:301-16.
28. Barrow AD, Martin CJ, Colonna M. The natural cytotoxicity receptors in health and disease. Front Immunol 2019;10:909.
29. Moghimi SM, Hunter AC, Murray JC. Long-circulating and targetspecific nanoparticles:theory to practice. Pharmacol Rev 2001;53:283-318.
30. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991;1066:29-36.
31. Gabizon A, Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci U S A 1988;85:6949-53.
32. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin VP, Langer R. Biodegradable long-circulating polymeric nanospheres. Science 1994;263:1600-2.
33. Leroux JC, De Jaeghere F, Anner B, Doekler E, Gurny R. An investigation on the role of plasma and serum opsonins on the internalization of biodegradable poly(D,L-lactic acid) nanoparticles by human monocytes. Life Sci 1995;57:695-703.
34. Bazile D, Prud'homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharmaceut Sci 1995;84:493-8.
35. Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 2012;134:2139-47.
36. Bisso PW, Gaglione S, Guimarães PPG, Mitchell MJ, Langer R. Nanomaterial interactions with human neutrophils. ACS Biomater Sci Eng 2018;4:4255-65.
37. Bartneck M, Keul HA, Zwadlo-Klarwasser G, Groll J. Phagocytosis independent extracellular nanoparticles clearance by human immune cells. Nano Lett 2010;10:59-63.
38. Rizzi M, Carniato F, Tonello S, Migliario M, Invernizzi M, Rocchetti V, et al. Charged molecular silica trigger in vitro NETosis in human granulocytes via both oxidative and autophagic pathways. Eur Rev Med Pharmacol Sci 2018;22:7058-68.
39. Peng HH, Liu YJ, Ojcius DM, Lee CM, Chen RH, Huang PR, et al. Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1. Sci Rep 2017;7:16628.
40. Hwang TL, Aljuffali IA, Hung CF, Chen CH, Fang JY. The impact of cationic solid lipid nanoparticles on human neutrophil activation and formation of neutrophil extracellular traps (NETs). Chem Biol Interact 2015;235:106-14.
41. Oja CD, Semple SC, Chonn A, Cullis PR. Influence of dose on liposome clearance:critical role of blood proteins. Biochim Biophys Acta 1996;1281:31-7.
42. Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes:effect of dose. Biochim Biophys Acta 1991;1068:133-41.
43. Panagi Z, Beletsi A, Evangelatos G, Livianou E, Ithakissios D, Avgoustakis K. Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA-mPEG nanoparticles. Int J Pharm 2001;221:143-52.
44. Chow DD, Essien HE, Padki MM, Hwang KL. Targeting small unilamellar liposomes to hepatic parenchymal cells by dose effect. J Pharmacol Exp Therapeut 1989;248:506-13.
45. Bertrand N, Grenier P, Mahmoudi M, Lima EM, Appel EA, Dormont F, et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun 2017;8:777.
46. Van Rooijen N, Kors N, Van de Ende M, Dijkstra C. Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res 1990;260:215-22.
47. Ohara Y, Oda T, Yamada K, Hashimoto S, Akashi Y, Miyamoto R, et al. Effective delivery of chemotherapeutic nanoparticles by depleting host Kupffer cells. Int J Cancer 2012;131:2402-10.
48. Tavares AJ, Poon W, Zhang YN, Dai Q, Besla R, Ding D, et al. Effect of removing Kupffer cells on nanoparticle tumor delivery. Proc Natl Acad Sci U S A 2017;114:E10871-80.
49. Bertrand N, Leroux JC. The journey of a drug carrier in the body:an anatomo-physiological perspective. J Control Release 2012;161:152-63.
50. Liu T, Choi H, Zhou R, Chen IW. RES blockade:a strategy for boosting efficiency of nanoparticle drug. Nano Today 2015;10:11-21.
51. Nikitin MP, Zelepukin IV, Shipunova VO, Sokolov IL, Deyev SM, Nikitin PI. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nat Biomed Eng 2020;4:717-31.
52. Ouyang B, Poon W, Zhang YN, Lin ZP, Kingston BR, Tavares AJ, et al. The dose threshold for nanoparticle tumour delivery. Nat Mater 2020;19:1362-71.
53. Wu H, Infante J, Keedy V, Jones S, Chan E, Bendell J, et al. Factors affecting the pharmacokinetics and pharmacodynamics of PEGylated liposomal irinotecan (IHL-305) in patients with advanced solid tumors. Int J Nanomed 2015;10:1201-9.
54. Zamboni WC, Maruca LJ, Strychor S, Zamboni BA, Ramalingam S, Edwards RP, et al. Bidirectional pharmacodynamic interaction between pegylated liposomal CKD-602 (S-CKD602) and monocytes in patients with refractory solid tumors. J Liposome Res 2011;21:158-65.
55. Gabizon A, Isacson R, Rosengarten O, Tzemach D, Shmeeda H, Sapir R. An open-label study to evaluate dose and cycle dependence of the pharmacokinetics of pegylated liposomal doxorubicin. Cancer Chemother Pharmacol 2008;61:695-702.
56. La-Beck NM, Zamboni BA, Gabizon A, Schmeeda H, Amantea M, Gehrig PA, et al. Factors affecting the pharmacokinetics of pegylated liposomal doxorubicin in patients. Cancer Chemother Pharmacol 2012;69:43-50.
57. Mross K, Niemann B, Massing U, Drevs J, Unger C, Bhamra R, et al. Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors:an open-label, single-dose study. Cancer Chemother Pharmacol 2004;54:514-24.
58. Hajishengallis G, Reis ES, Mastellos DC, Ricklin D, Lambris JD. Novel mechanisms and functions of complement. Nat Immunol 2017; 18:1288-98.
59. Kolev M, Le Friec G, Kemper C. Complement-tapping into new sites and effector systems. Nat Rev Immunol 2014;14:811-20.
60. Reis ES, Mastellos DC, Hajishengallis G, Lambris JD. New insights into the immune functions of complement. Nat Rev Immunol 2019; 19:503-16.
61. Chonn A, Cullis PR, Devine DV. The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol 1991;146:4234-41.
62. Devine DV, Wong K, Serrano K, Chonn A, Cullis PR. Liposomecomplement interactions in rat serum:implications for liposome survival studies. Biochim Biophys Acta 1994;1191:43-51.
63. Alléman É, Gravel P, Leroux JC, Balant L, Gurny R. Kinetics of blood component adsorption on poly(D,L-lactic acid) nanoparticles:evidence of complement C3 component involvement. J Biomed Mater Res 1997;37:229-34.
64. Hamad I, Al-Hanbali O, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface:implications for stealth nanoparticle engineering. ACS Nano 2010;4:6629-38.
65. Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, et al. Nanoparticles:the impact of peg density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett 2012;12:5304-10.
66. Moghimi SM, Simberg D, Papini E, Farhangrazi ZS. Complement activation by drug carriers and particulate pharmaceuticals:principles, challenges and opportunities. Adv Drug Deliv Rev 2020; 157:83-95.
67. Bottermann M, Foss S, Caddy SL, Clift D, van Tienen LM, Vaysburd M, et al. Complement C4 prevents viral infection through capsid inactivation. Cell Host Microbe 2019;25:617-29. e7.
68. Li E, Tako EA, Singer SM. Complement activation by Giardia duodenalis parasites through the lectin pathway contributes to mast cell responses and parasite control. Infect Immun 2016;84:1092-9.
69. Ahl PL, Bhatia SK, Meers P, Roberts P, Stevens R, Dause R, et al. Enhancement of the in vivo circulation lifetime of l-α-distearoylphosphatidylcholine liposomes:importance of liposomal aggregation versus complement opsonization. Biochim Biophys Acta 1997;1329:370-82.
70. Barron LG, Meyer KB, Szoka FCJ. Effects of complement depletion on the pharmacokinetics and gene delivery mediated by cationic lipid-DNA complexes. Hum Gene Ther 1998;9:315-23.
71. Grenier P, Viana IMO, Lima EM, Bertrand N. Anti-polyethylene glycol antibodies alter the protein corona deposited on nanoparticles and the physiological pathways regulating their fate in vivo. J Control Release 2018;287:121-31.
72. Viana IMO, Grenier P, Defrêne J, Barabé F, Lima EM, Bertrand N. Role of the complement cascade on the biological fate of liposomes in rodents. Nanoscale 2020;12:18875-84.
73. Wang L, Su Y, Wang X, Liang K, Liu M, Tang W, et al. Effects of complement inhibition on the ABC phenomenon in rats. Asian J Pharm Sci 2016;3:250-8.
74. Carpentier KS, Davenport BJ, Haist KC, McCarthy MK, May NA, Robison A, et al. Discrete viral E2 lysine residues and scavenger receptor MARCO are required for clearance of circulating alphaviruses. ELife 2019;8:49163.
75. Xu Z, Tian J, Smith JS, Byrnes AP. Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, natural antibodies, and complement. J Virol 2008;82:11705-13.
76. Chen F, Wang G, Griffin JI, Brenneman B, Banda NK, Holers VM, et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat Nanotechnol 2016;12:387-93.
77. Inturi S, Wang G, Chen F, Banda NK, Holers VM, Wu L, et al. Modulatory role of surface coating of superparamagnetic iron oxide nanoworms in complement opsonization and leukocyte uptake. ACS Nano 2015;9:10758-68.
78. Schöttler S, Becker G, Winzen S, Steinbach T, Mohr K, Landfester K, et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol 2016;11:372-7.
79. Bankwitz D, Doepke M, Hueging K, Weller R, Bruening J, Behrendt P, et al. Maturation of secreted HCV particles by incorporation of secreted ApoE protects from antibodies by enhancing infectivity. J Hepatol 2017;67:480-9.
80. Dong Y, Love KT, Dorkin JR, Sirirungruang S, Zhang Y, Chen D, et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci U S A 2014;111:3955-60.
81. Vu VP, Gifford GB, Chen F, Benasutti H, Wang G, Groman EV, et al. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat Nanotechnol 2019;14:260-8.
82. Ding T, Guan J, Wang M, Long Q, Liu X, Qian J, et al. Natural IgM dominates in vivo performance of liposomes. J Control Release 2020; 319:371-81.
83. Spellberg B, Edwards JE. Type 1/type 2 immunity in infectious diseases. Clin Infect Dis 2001;32:76-102.
84. Italiani P, Boraschi D. From monocytes to M1/M2 macrophages:phenotypical vs. functional differentiation. Front Immunol 2014;5:514.
85. Liddiard K, Taylor PR. Understanding local macrophage phenotypes in disease:shape-shifting macrophages. Nat Med 2015;21:119-20.
86. Jones SW, Roberts RA, Robbins GR, Perry JL, Kai MP, Chen K, et al. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Invest 2013;123:3061-73.
87. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology:the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014;66:2-25.
88. Miller MA, Zheng YR, Gadde S, Pfirschke C, Zope H, Engblom C, et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat Commun 2015;6:8692.
89. Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng 2018;2:578-88.
90. Shan H, Dou W, Zhang Y, Qi M. Targeted ferritin nanoparticle encapsulating CpG oligodeoxynucleotides induces tumor-associated macrophage M2 phenotype polarization into M1 phenotype and inhibits tumor growth. Nanoscale 2020;12:22268-80.
91. Rao L, Wu L, Liu Z, Tian R, Yu G, Zhou Z, et al. Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nat Commun 2020;11:4909.
92. Steinman RM, Witmer MD. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci U S A 1978;75:5132-6.
93. Ekeruche-Makinde J, Miles JJ, van den Berg HA, Skowera A, Cole DK, Dolton G, et al. Peptide length determines the outcome of TCR/peptide-MHCI engagement. Blood 2013;121:1112-23.
94. Sant AJ. Endogenous antigen presentation by MHC class II molecules. Immunol Res 1994;13:253-67.
95. Pape KA, Catron DM, Itano AA, Jenkins MK. The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 2007;26:491-502.
96. Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, Johnson TE, et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 2013;39:599-610.
97. Willard-Mack CL. Normal structure, function, and histology of lymph nodes. Toxicol Pathol 2006;34:409-24.
98. Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev 2001;50:3-20.
99. Roozendaal R, Mempel TR, Pitcher LA, Gonzalez SF, Verschoor A, Mebius RE, et al. Conduits mediate transport of low-molecularweight antigen to lymph node follicles. Immunity 2009;30:264-76.
100. Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA, Boes M, et al. Subcapsular sinus macrophages in lymph nodes clear lymphborne viruses and present them to antiviral B cells. Nature 2007;450:110-4.
101. Proulx ST, Luciani P, Christiansen A, Karaman S, Blum KS, Rinderknecht M, et al. Use of a PEG-conjugated bright near-infrared dye for functional imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis. Biomaterials 2013;34:5128-37.
102. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O'Neil CP, et al. Exploiting lymphatic transport and complement activation in nanoparticles vaccines. Nat Biotechnol 2007;25:1159-64.
103. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012;12:265-77.
104. Akkaya M, Kwak K, Pierce SK. B cell memory:building two walls of protection against pathogens. Nat Rev Immunol 2020;20:229-38.
105. Ochsenbein AF, Zinkernagel RM. Natural antibodies and complement link innate and acquired immunity. Immunol Today 2000;21:624-30.
106. Dams ETM, Laverman P, Oyen WJG, Storm G, Scherphof GL, Van der Meer JWM, et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Therapeut 2000;292:1071-9.
107. Wang XY, Ishida T, Kiwada H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J Control Release 2007;119:236-44.
108. Ishida T, Ichihara M, Wang XY, Kiwada H. Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J Control Release 2006;115:243-50.
109. Ishida T, Wang XY, Shimizu T, Nawata K, Kiwada H. PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J Control Release 2007;122:349-55.
110. Tagami T, Nakamura K, Shimizu T, Ishida T, Kiwada H. Effect of siRNA in PEG-coated siRNA-lipoplex on anti-PEG IgM production. J Control Release 2009;137:234-40.
111. Shimizu T, Ichihara M, Yoshioka Y, Ishida T, Nakagawa S, Kiwada H. Intravenous administration of polyethylene glycol-coated (PEGylated) proteins and PEGylated adenovirus elicits an anti-PEG immunoglobulin M response. Biol Pharm Bull 2012;35:1336-42.
112. Wang XY, Ishida T, Ichihara M, Kiwada H. Influence of the physicochemical properties of liposomes on the accelerated blood clearance phenomenon in rats. J Control Release 2005;104:91-102.
113. Ishida T, Harada M, Wang XY, Ichihara M, Irimura K, Kiwada H. Accelerated blood clearance of PEGylated liposomes following preceding liposome injection:effects of lipid dose and PEG surfacedensity and chain length of the first-dose liposomes. J Control Release 2005;105:305-17.
114. Ishida T, Atobe K, Wang XY, Kiwada H. Accelerated blood clearance of PEGylated liposomes upon repeated injections:effect of doxorubicin-encapsulation and high dose first injection. J Control Release 2006;115:251-8.
115. Yang Q, Jacobs TM, McCallen JD, Moore DT, Huckaby JT, Edelstein JN, et al. Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population. Anal Chem 2016;88:11804-12.
116. Lubich C, Allacher P, de la Rosa M, Bauer A, Prenninger T, Horling FM, et al. The mystery of antibodies against polyethylene glycol (PEG)-what do we know?. Pharm Res 2016;33:2239-49.
117. Chen BM, Su YC, Chang CJ, Burnouf PA, Chuang KH, Chen CH, et al. Measurement of pre-existing IgG and IgM antibodies against polyethylene glycol in healthy individuals. Anal Chem 2016;88:10661-6.
118. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015;348:124-8.
119. Lebel MÈ, Chartrand K, Tarrab E, Savard P, Leclerc D, Lamarre A. Potentiating cancer immunotherapy using papaya mosaic virusderived nanoparticles. Nano Lett 2016;16:1826-32.
120. Bu J, Nair A, Iida M, Jeong WJ, Poellmann MJ, Mudd K, et al. An avidity-based PD-L1 antagonist using nanoparticle-antibody conjugates for enhanced immunotherapy. Nano Lett 2020;20:4901-9.
121. Han X, Wang L, Li T, Zhang J, Zhang D, Li J, et al. Beyond blocking:engineering RNAi-mediated targeted immune checkpoint nanoblocker enables T-cell-independent cancer treatment. ACS Nano 2020;14:17524-34.
122. Oberli MA, Reichmuth AM, Dorkin JR, Mitchell MJ, Fenton OS, Jaklenec A, et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett 2017;17:1326-35.
123. Islam MA, Rice J, Reesor E, Zope H, Tao W, Lim M, et al. J. Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials 2021; 266:120431.
124. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015;348:62-8.
125. Parayath NN, Stephan SB, Koehne AL, Nelson PS, Stephan MT. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat Commun 2020;11:6080.
126. Kim J, Eygeris Y, Gupta M, Sahay G. Self-assembled mRNA vaccines. Adv Drug Deliv Rev 2021;170:83-112.
127. Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med 2020;383:1544-55.
128. Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020;586:589-93.
129. Zhang NN, Li XF, Deng YQ, Zhao H, Huang YJ, Yang G, et al. A thermostable mRNA vaccine against COVID-19. Cell 2020;182:1271-83. e16.
130. Corbett KS, Edwards DK, Leist SR, Abiona OM, BoyogluBarnum S, Gillespie RA, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020;586:567-71.
131. Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA vaccine against SARS-CoV-2-preliminary report. N Engl J Med 2020;383:1920-31.
132. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384:403-16.
133. Vogel AB, Kanevsky I, Che Y, Swanson KA, Muik A, Vormehr M, et al. Immunogenic BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 2021;592:283-9.
134. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020;383:2603-15.
135. Sahin U, Muik A, Vogler I, Derhovanessian E, Kranz LM, Vormehr M, et al. BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans. medRxiv 2020. Available from:https://ncrc.jhsph.edu/research/bnt162b2-induces-sars-cov-2-neutralising-antibodies-and-t-cells-in-humans/.
Similar articles:
1.Jin Li, Diane J. Burgess.Nanomedicine-based drug delivery towards tumor biological and immunological microenvironment[J]. Acta Pharmaceutica Sinica B, 2020,10(11): 2110-2124
Similar articles: