Anan Yaghmur, Huiling Mu. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles[J]. Acta Pharmaceutica Sinica B, 2021, 11(4): 871-885

Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles
Anan Yaghmur, Huiling Mu
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
The use of lipid nanocarriers for drug delivery applications is an active research area, and a great interest has particularly been shown in the past two decades. Among different lipid nanocarriers, ISAsomes (Internally self-assembled somes or particles), including cubosomes and hexosomes, and solid lipid nanoparticles (SLNs) have unique structural features, making them attractive as nanocarriers for drug delivery. In this contribution, we focus exclusively on recent advances in formation and characterization of ISAsomes, mainly cubosomes and hexosomes, and their use as versatile nanocarriers for different drug delivery applications. Additionally, the advantages of SLNs and their application in oral and pulmonary drug delivery are discussed with focus on the biological fates of these lipid nanocarriers in vivo. Despite the demonstrated advantages in in vitro and in vivo evaluations including preclinical studies, further investigations on improved understanding of the interactions of these nanoparticles with biological fluids and tissues of the target sites is necessary for efficient designing of drug nanocarriers and exploring potential clinical applications.
Key words:    Biological fate    Cubosomes    Drug delivery    Hexosomes    Inverse non-lamellar liquid crystalline phases    Nano-self-assemblies    Solid crystalline phases    Solid lipid nanoparticles   
Received: 2020-11-04     Revised: 2021-01-11
DOI: 10.1016/j.apsb.2021.02.013
Funds: Financial support to Anan Yaghmur for studies on development of drug nanocarriers based on cubosomes and hexosomes by the Danish Council for Independent Research j Technology and Production Sciences (references 1335-00150b and DFF-7017-00065, Denmark) is gratefully acknowledged.
Corresponding author: Anan Yaghmur,;Huiling Mu,;
Author description:
PDF(KB) Free
Anan Yaghmur
Huiling Mu

1. Couvreur P, Vauthier C. Nanotechnology:intelligent design to treat complex disease. Pharm Res (N Y) 2006;23:1417-50.
2. Moghimi SM, Hunter AC, Murray JC. Nanomedicine:current status and future prospects. Faseb J 2005;19:311-30.
3. Wibroe PP, Ahmadvand D, Oghabian MA, Yaghmur A, Moghimi SM. An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome. J Control Release 2016;221:1-8.
4. Garcia-Pinel B, Porras-Alcala C, Ortega-Rodriguez A, Sarabia F, Prados J, Melguizo C, et al. Lipid-based nanoparticles:application and recent advances in cancer treatment. Nanomaterials 2019;9:638.
5. Bor G, Mat Azmi ID, Yaghmur A. Nanomedicines for cancer therapy:current status, challenges and future prospects. Ther Deliv 2019; 10:113-32.
6. Azmi ID, Moghimi SM, Yaghmur A. Cubosomes and hexosomes as versatile platforms for drug delivery. Ther Deliv 2015;6:1347-64.
7. Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharmaceut Sci 2013;48:416-27.
8. Murgia S, Biffi S, Mezzenga R. Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Curr Opin Colloid Interface Sci 2020;48:28-39.
9. Souto EB, Baldim I, Oliveira WP, Rao R, Yadav N, Gama FM, et al. SLN and NLC for topical, dermal, and transdermal drug delivery. Expet Opin Drug Deliv 2020;17:357-77.
10. Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy:what is available and what is yet to come. Pharmacol Rev 2016;68:701-87.
11. Sastri KT, Radha GV, Pidikiti S, Vajjhala P. Solid lipid nanoparticles:preparation techniques, their characterization, and an update on recent studies. J Appl Pharmaceut Sci 2020;10:126-41.
12. Pucek A, Tokarek B, Waglewska E, Bazyliń nska U. Recent advances in the structural design of photosensitive agent formulations using "soft" colloidal nanocarriers. Pharmaceutics 2020;12:587.
13. Mahant S, Rao R, Souto EB, Nanda S. Analytical tools and evaluation strategies for nanostructured lipid carrier based topical delivery systems. Expet Opin Drug Deliv 2020;17:963-92.
14. Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017;264:306-32.
15. Yaghmur A, Glatter O. Characterization and potential applications of nanostructured aqueous dispersions. Adv Colloid Interface Sci 2009; 147-48:333-42.
16. Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers:a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018;133:285-308.
17. Glatter O, Salentinig S. Inverting structures:from micelles via emulsions to internally self-assembled water- and oil-continuous nanocarriers. Curr Opin Colloid Interface Sci 2020;49:82-93.
18. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for sitespecific drug delivery. Biomed Pharmacother 2018;103:598-613.
19. Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles:a review on recent perspectives and patents. Expert Opin Ther Pat 2020;30:179-94.
20. Angelova A, Garamus VM, Angelov B, Tian Z, Li Y, Zou A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv Colloid Interface Sci 2017;249:331-45.
21. Yaghmur A, Al-Hosayni S, Amenitsch H, Salentinig S. Structural investigation of bulk and dispersed inverse lyotropic hexagonal liquid crystalline phases of eicosapentaenoic acid monoglyceride. Langmuir 2017;33:14045-57.
22. Shao X, Bor G, Al-Hosayni S, Salentinig S, Yaghmur A. Structural characterization of self-assemblies of new omega-3 lipids:docosahexaenoic acid and docosapentaenoic acid monoglycerides. Phys Chem Chem Phys 2018;20:23928-41.
23. Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir 1997;13:6964-71.
24. Larsson K. Lyotropic liquid crystals and their dispersions relevant in foods. Curr Opin Colloid Interface Sci 2009;14:16-20.
25. de Campo L, Yaghmur A, Sagalowicz L, Leser ME, Watzke H, Glatter O. Reversible phase transitions in emulsified nanostructured lipid systems. Langmuir 2004;20:5254-61.
26. Yaghmur A, de Campo L, Sagalowicz L, Leser ME, Glatter O. Emulsified microemulsions and oil-containing liquid crystalline phases. Langmuir 2005;21:569-77.
27. Dong YD, Larson I, Hanley T, Boyd BJ. Bulk and dispersed aqueous phase behavior of phytantriol:effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure. Langmuir 2006;22:9512-8.
28. Nakano M, Teshigawara T, Sugita A, Leesajakul W, Taniguchi A, Kamo T, et al. Dispersions of liquid crystalline phases of the monoolein/oleic acid/Pluronic F127 system. Langmuir 2002;18:9283-8.
29. Gontsarik M, Buhmann MT, Yaghmur A, Ren Q, Maniura-Weber K, Salentinig S. Antimicrobial peptide-driven colloidal transformations in liquid-crystalline nanocarriers. J Phys Chem Lett 2016;7:3482-6.
30. Helvig SY, Andersen H, Antopolsky M, Airaksinen AJ, Urtti A, Yaghmur A, et al. Hexosome engineering for targeting of regional lymph nodes. Materialia 2020;11:100705.
31. Yaghmur A, Rappolt M, Jonassen ALU, Schmitt M, Larsen SW. In situ monitoring of the formation of lipidic non-lamellar liquid crystalline depot formulations in synovial fluid. J Colloid Interface Sci 2021;582:773-81.
32. Azmi ID, Wibroe PP, Wu LP, Kazem AI, Amenitsch H, Moghimi SM, et al. A structurally diverse library of safe-by-design citrem-phospholipid lamellar and non-lamellar liquid crystalline nano-assemblies. J Control Release 2016;239:1-9.
33. Azmi ID, Wu L, Wibroe PP, Nilsson C, Ostergaard J, Sturup S, et al. Modulatory effect of human plasma on the internal nanostructure and size characteristics of liquid-crystalline nanocarriers. Langmuir 2015;31:5042-9.
34. Azmi IDM, Ostergaard J, Sturup S, Gammelgaard B, Urtti A, Moghimi SM, et al. Cisplatin encapsulation generates morphologically different multicompartments in the internal nanostructures of nonlamellar liquid-crystalline self-assemblies. Langmuir 2018;34:6570-81.
35. Anderluzzi G, Lou G, Su Y, Perrie Y. Scalable manufacturing processes for solid lipid nanoparticles. Pharm Nanotechnol 2019;7:444-59.
36. Prajapati R, Salentinig S, Yaghmur A. Temperature triggering of kinetically trapped self-assemblies in citrem-phospholipid nanoparticles. Chem Phys Lipids 2018;216:30-8.
37. Xia H, Seah Y, Liu Y, Wang W, Toh AG, Wang Z. Anti-solvent precipitation of solid lipid nanoparticles using a microfluidic oscillator mixer. Microfluid Nanofluidics 2015;19:283-90.
38. Khaliqi K, Ghazal A, Azmi IDM, Amenitsch H, Mortensen K, Salentinig S, et al. Direct monitoring of lipid transfer on exposure of citrem nanoparticles to an ethanol solution containing soybean phospholipids by combining synchrotron SAXS with microfluidics. Analyst 2017;142:3118-26.
39. Yaghmur A, Ghazal A, Ghazal R, Dimaki M, Svendsen WE. A hydrodynamic flow focusing microfluidic device for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride. Phys Chem Chem Phys 2019;21:13005-13.
40. Kim H, Sung J, Chang Y, Alfeche A, Leal C. Microfluidics synthesis of gene silencing cubosomes. ACS Nano 2018;12:9196-205.
41. Ilhan-Ayisigi E, Yaldiz B, Bor G, Yaghmur A, Yesil-Celiktas O. Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies. Colloid Surface B 2021;201:111633. Available from:
42. Yaghmur A, de Campo L, Sagalowicz L, Leser ME, Glatter O. Control of the internal structure of MLO-based isasomes by the addition of diglycerol monooleate and soybean phosphatidylcholine. Langmuir 2006;22:9919-27.
43. Yaghmur A, de Campo L, Salentinig S, Sagalowicz L, Leser ME, Glatter O. Oil-loaded monolinolein-based particles with confined inverse discontinuous cubic structure (Fd3m). Langmuir 2006;22:517-21.
44. Angelova A, Angelov B, Mutafchieva R, Lesieur S, Couvreur P. Selfassembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery. Acc Chem Res 2011; 44:147-56.
45. Zhai J, Fong C, Tran N, Drummond CJ. Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the next generation of nanomedicine. ACS Nano 2019;13:6178-206.
46. Tan A, Hong L, Du JD, Boyd BJ. Self-assembled nanostructured lipid systems:is there a link between structure and cytotoxicity?. Adv Sci 2019;6:1801223.
47. Helvig SY, Woythe L, Pham S, Bor G, Andersen H, Moghimi SM, et al. A structurally diverse library of glycerol monooleate/oleic acid non-lamellar liquid crystalline nanodispersions stabilized with nonionic methoxypoly (ethylene glycol)(mPEG)-lipids showing variable complement activation properties. J Colloid Interface Sci 2021;582:906-17.
48. Salentinig S, Yaghmur A, Guillot S, Glatter O. Preparation of highly concentrated nanostructured dispersions of controlled size. J Colloid Interface Sci 2008;326:211-20.
49. Hempt C, Gontsarik M, Buerki-Thurnherr T, Hirsch C, Salentinig S. Nanostructure generation during milk digestion in presence of cell culture models simulating the small intestine. J Colloid Interface Sci 2020;574:430-40.
50. Salentinig S, Phan S, Hawley A, Boyd BJ. Self-assembly structure formation during the digestion of human breast milk. Angew Chem Int Ed 2015;54:1600-3.
51. Salentinig S, Amenitsch H, Yaghmur A. In situ monitoring of nanostructure formation during the digestion of mayonnaise. ACS Omega 2017;2:1441-6.
52. Yaghmur A, Lotfi S, Ariabod SA, Bor G, Gontsarik M, Salentinig S. Internal lamellar and inverse hexagonal liquid crystalline phases during the digestion of krill and astaxanthin oil-in-water emulsions. Front Bioeng Biotechnol 2019;7:384.
53. Salentinig S. Supramolecular structures in lipid digestion and implications for functional food delivery. Curr Opin Colloid Interface Sci 2019;39:190-201.
54. Yaghmur A. Nanoencapsulation of food ingredients by cubosomes and hexosomes. In:Jafari SM, editor. Lipid-based nanostructures for food encapsulation purposes, vol. 2, chap 12. Elsevier Book Series; 2019. p. 483-522.
55. Rosa M, Rosa Infante M, Miguel MdG, Lindman B. Spontaneous formation of vesicles and dispersed cubic and hexagonal particles in amino acid-based catanionic surfactant systems. Langmuir 2006;22:5588-96.
56. Spicer PT, Hayden KL, Lynch ML, Ofori-Boateng A, Burns JL. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir 2001;17:5748-56.
57. Chong JYT, Mulet X, Waddington LJ, Boyd BJ, Drummond CJ. Steric stabilisation of self-assembled cubic lyotropic liquid crystalline nanoparticles:high throughput evaluation of triblock polyethylene oxide-polypropylene oxide-polyethylene oxide copolymers. Soft Matter 2011;7:4768-77.
58. Nilsson C, Edwards K, Eriksson J, Larsen SW, Ostergaard J, Larsen C, et al. Characterization of oil-free and oil-loaded liquidcrystalline particles stabilized by negatively charged stabilizer citrem. Langmuir 2012;28:11755-66.
59. Wibroe PP, Mat Azmi ID, Nilsson C, Yaghmur A, Moghimi SM. Citrem modulates internal nanostructure of glyceryl monooleate dispersions and bypasses complement activation:towards development of safe tunable intravenous lipid nanocarriers. Nanomedicine 2015;11:1909-14.
60. Nilsson C, Ostergaard J, Larsen SW, Larsen C, Urtti A, Yaghmur A. PEGylation of phytantriol-based lyotropic liquid crystalline particles-the effect of lipid composition, PEG chain length, and temperature on the internal nanostructure. Langmuir 2014;30:6398-407.
61. Hinton TM, Grusche F, Acharya D, Shukla R, Bansal V, Waddington LJ, et al. Bicontinuous cubic phase nanoparticle lipid chemistry affects toxicity in cultured cells. Toxicol Res 2014;3:11-22.
62. Murgia S, Falchi AM, Mano M, Lampis S, Angius R, Carnerup AM, et al. Nanoparticles from lipid-based liquid crystals:emulsifier influence on morphology and cytotoxicity. J Phys Chem B 2010;114:3518-25.
63. Fornasier M, Biffi S, Bortot B, Macor P, Manhart A, Wurm FR, et al. Cubosomes stabilized by a polyphosphoester-analog of Pluronic F127 with reduced cytotoxicity. J Colloid Interface Sci 2020;580:286-97.
64. Zabara M, Senturk B, Gontsarik M, Ren Q, Rottmar M, ManiuraWeber K, et al. Multifunctional nano-biointerfaces:cytocompatible antimicrobial nanocarriers from stabilizer-free cubosomes. Adv Funct Mater 2019;29:1904007.
65. Boyd BJ, Dong YD, Rades T. Nonlamellar liquid crystalline nanostructured particles:advances in materials and structure determination. J Liposome Res 2009;19:12-28.
66. Helvig S, Azmi IDM, Moghimi SM, Yaghmur A. Recent advances in cryo-TEM imaging of soft lipid nanoparticles. Aims Biophys 2015;2:116-30.
67. Yaghmur A, Laggner P, Almgren M, Rappolt M. Self-assembly in monoelaidin aqueous dispersions:direct vesicles to cubosomes transition. PLoS One 2008;3:e3747.
68. Yaghmur A, Sartori B, Rappolt M. Self-assembled nanostructures of fully hydrated monoelaidin-elaidic acid and monoelaidin-oleic acid systems. Langmuir 2012;28:10105-19.
69. Prajapati R, Gontsarik M, Yaghmur A, Salentinig S. pH-Responsive nano-self-assemblies of the anticancer drug 2-hydroxyoleic acid. Langmuir 2019;35:7954-61.
70. Prajapati R, Larsen SW, Yaghmur A. Citrem-phosphatidylcholine nano-self-assemblies:solubilization of bupivacaine and its role in triggering colloidal transition from vesicles to cubosomes and hexosomes. Phys Chem Chem Phys 2019;21:15142-50.
71. Kluzek M, Tyler AII, Wang S, Chen R, Marques CM, Thalmann F, et al. Influence of a pH-sensitive polymer on the structure of monoolein cubosomes. Soft Matter 2017;13:7571-7.
72. Ghazal A, Gontsarik M, Kutter JP, Lafleur JP, Labrador A, Mortensen K, et al. Direct monitoring of calcium-triggered phase transitions in cubosomes using small-angle X-ray scattering combined with microfluidics. J Appl Crystallogr 2016;49:2005-14.
73. Yaghmur A, Sartori B, Rappolt M. The role of calcium in membrane condensation and spontaneous curvature variations in model lipidic systems. Phys Chem Chem Phys 2011;13:3115-25.
74. Yaghmur A, Rappolt M. Structural characterization of lipidic systems under nonequilibrium conditions. Eur Biophys J 2012;41:831-40.
75. Yaghmur A, Laggner P, Sartori B, Rappolt M. Calcium triggered L alpha-H2 phase transition monitored by combined rapid mixing and time-resolved synchrotron SAXS. PLoS One 2008;3:e2072.
76. Almgren M, Edwards K, Karlsson G. Cryo transmission electron microscopy of liposomes and related structures. Colloid Surface 2000;174:3-21.
77. Sagalowicz L, Michel M, Adrian M, Frossard P, Rouvet M, Watzke HJ, et al. Crystallography of dispersed liquid crystalline phases studied by cryo-transmission electron microscopy. J MicroscOxford 2006;221:110-21.
78. Yaghmur A, Tran BV, Moghimi SM. Non-lamellar liquid crystalline nanocarriers for thymoquinone encapsulation. Molecules 2020;25:16.
79. Barauskas J, Johnsson M, Tiberg F. Self-assembled lipid superstructures:beyond vesicles and liposomes. Nano Lett 2005;5:1615-9.
80. Tajik-Ahmadabad B, Chollet L, White J, Separovic F, Polyzos A. Metallo-cubosomes:zinc-functionalized cubic nanoparticles for therapeutic nucleotide delivery. Mol Pharm 2019;16:978-86.
81. Rakotoarisoa M, Angelov B, Garamus VM, Angelova A. Curcumin-and fish oil-loaded spongosome and cubosome nanoparticles with neuroprotective potential against H2O2-induced oxidative stress in differentiated human SH-SY5Y cells. ACS Omega 2019;4:3061-73.
82. Faria AR, Silvestre OF, Maibohm C, Adao RMR, Silva BFB, Nieder JB. Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NAD(P)H multi-photon fluorescence lifetime imaging. Nano Res 2019;12:991-8.
83. Khan S, Jain P, Jain S, Jain R, Bhargava S, Jain A. Topical delivery of erythromycin through cubosomes for acne. Pharm Nanotechnol 2018;6:38-47.
84. Barriga HMG, Holme MN, Stevens MM. Cubosomes; the next generation of smart lipid nanoparticles?. Angew Chem Int Ed Engl 2019;58:2958-78.
85. Gontsarik M, Yaghmur A, Ren Q, Maniura-Weber K, Salentinig S. From structure to function:pH-Switchable antimicrobial nano-selfassemblies. ACS Appl Mater Interfaces 2019;11:2821-9.
86. Gontsarik M, Mohammadtaheri M, Yaghmur A, Salentinig S. pHTriggered nanostructural transformations in antimicrobial peptide/oleic acid self-assemblies. Biomater Sci 2018;6:803-12.
87. Mertins O, Mathews PD, Angelova A. Advances in the design of pHsensitive cubosome liquid crystalline nanocarriers for drug delivery applications. Nanomaterials 2020;10:963.
88. Gontsarik M, Yaghmur A, Salentinig S. Dispersed liquid crystals as pH-adjustable antimicrobial peptide nanocarriers. J Colloid Interface Sci 2021;583:672-82.
89. Nguyen T-H, Hanley T, Porter CJ, Boyd BJ. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release 2011;153:180-6.
90. Puglia C, Cardile V, Panico AM, Crasci L, Offerta A, Caggia S, et al. Evaluation of monooleine aqueous dispersions as tools for topical administration of curcumin:characterization, in vitro and ex-vivo studies. J Pharmacol Sci 2013;102:2349-61.
91. Tran N, Mulet X, Hawley AM, Hinton TM, Mudie ST, Muir BW, et al. Nanostructure and cytotoxicity of self-assembled monooleincapric acid lyotropic liquid crystalline nanoparticles. RSC Adv 2015; 5:26785-95.
92. Shen HH, Crowston JG, Huber F, Saubern S, McLean KM, Hartley PG. The influence of dipalmitoyl phosphatidylserine on phase behaviour of and cellular response to lyotropic liquid crystalline dispersions. Biomaterials 2010;31:9473-81.
93. Li Y, Angelova A, Hu F, Garamus VM, Peng C, Li N, et al. pH Responsiveness of hexosomes and cubosomes for combined delivery of brucea javanica oil and doxorubicin. Langmuir 2019;35:14532-42.
94. Ramalheiro A, Paris JL, Silva BF, Pires LR. Rapidly dissolving microneedles for the delivery of cubosome-like liquid crystalline nanoparticles with sustained release of rapamycin. Int J Pharm 2020:119942.
95. Flak DK, Adamski V, Nowaczyk G, Szutkowski K, Synowitz M, Jurga S, et al. AT101-loaded cubosomes as an alternative for improved glioblastoma therapy. Int J Nanomed 2020;15:7415-31.
96. Bakr MM, Shukr MH, ElMeshad AN. In situ hexosomal gel as a promising tool to ameliorate the transnasal brain delivery of vinpocetine:central composite optimization and in vivo biodistribution. J Pharmacol Sci 2020;109:2213-23.
97. Wu H, Li J, Zhang Q, Yan X, Guo L, Gao X, et al. A novel small Odorranalectin-bearing cubosomes:preparation, brain delivery and pharmacodynamic study on amyloid-β25-35-treated rats following intranasal administration. Eur J Pharm Biopharm 2012;80:368-78.
98. Silvestrin AVP, Caron AL, Viegas J, Praça FG, Bentley MVLB. Advances in lyotropic liquid crystal systems for skin drug delivery. Expet Opin Drug Deliv 2020;17:1781-805.
99. de Carvalho Vicentini FTM, Depieri LV, Polizello ACM, Del Ciampo JO, Spadaro ACC, Fantini MC, et al. Liquid crystalline phase nanodispersions enable skin delivery of siRNA. Eur J Pharm Biopharm 2013;83:16-24.
100. Kang M, Leal C. Soft nanostructured films for actuated surface-based siRNA delivery. Adv Funct Mater 2016;26:5610-20.
101. Li Y, Angelova A, Liu J, Garamus VM, Li N, Drechsler M, et al. In situ phase transition of microemulsions for parenteral injection yielding lyotropic liquid crystalline carriers of the antitumor drug bufalin. Colloids Surf, B 2019;173:217-25.
102. Mei L, Xie Y, Huang Y, Wang B, Chen J, Quan G, et al. Injectable in situ forming gel based on lyotropic liquid crystal for persistent postoperative analgesia. Acta Biomater 2018;67:99-110.
103. Yaghmur A, Larsen SW, Schmitt M, Ostergaard J, Larsen C, Jensen H, et al. In situ characterization of lipidic bupivacaine-loaded formulations. Soft Matter 2011;7:8291-5.
104. Yaghmur A, Rappolt M, Ostergaard J, Larsen C, Larsen SW. Characterization of bupivacaine-loaded formulations based on liquid crystalline phases and microemulsions:the effect of lipid composition. Langmuir 2012;28:2881-9.
105. Yaghmur A, Rappolt M, Larsen SW. In situ forming drug delivery systems based on lyotropic liquid crystalline phases:structural characterization and release properties. J Drug Deliv Sci Tec 2013; 23:325-32.
106. von Halling Laier C, Gibson B, Moreno JAS, Rades T, Hook S, Nielsen LH, et al. Microcontainers for protection of oral vaccines, in vitro and in vivo evaluation. J Control Release 2019;294:91-101.
107. Jin X, Zhang ZH, Li SL, Sun E, Tan XB, Song J, et al. A nanostructured liquid crystalline formulation of 20 (S)-protopanaxadiol with improved oral absorption. Fitoterapia 2013;84:64-71.
108. Otte A, Soh B-K, Yoon G, Park K. Liquid crystalline drug delivery vehicles for oral and IV/subcutaneous administration of poorly soluble (and soluble) drugs. Int J Pharm 2018;539:175-83.
109. Swarnakar NK, Thanki K, Jain S. Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of doxorubicin:implications on bioavailability, therapeutic efficacy, and cardiotoxicity. Pharm Res (N Y) 2014;31:1219-38.
110. Yang Z, Chen M, Yang M, Chen J, Fang W, Xu P. Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection. Int J Nanomed 2014;9:327.
111. Tran N, Bye N, Moffat BA, Wright DK, Cuddihy A, Hinton TM, et al. Dual-modality NIRF-MRI cubosomes and hexosomes:high throughput formulation and in vivo biodistribution. Mater Sci Eng C Mater Biol Appl 2017;71:584-93.
112. Biffi S, Andolfi L, Caltagirone C, Garrovo C, Falchi AM, Lippolis V, et al. Cubosomes for in vivo fluorescence lifetime imaging. Nanotechnology 2017;28:055102.
113. Bye N, Hutt OE, Hinton TM, Acharya DP, Waddington LJ, Moffat BA, et al. Nitroxide-loaded hexosomes provide MRI contrast in vivo. Langmuir 2014;30:8898-906.
114. Jain V, Swarnakar NK, Mishra PR, Verma A, Kaul A, Mishra AK, et al. Paclitaxel loaded PEGylated gleceryl monooleate based nanoparticulate carriers in chemotherapy. Biomaterials 2012;33:7206-20.
115. Zhai J, Tan F, Luwor R, Srinivasa Reddy T, Ahmed N, Drummond CJ, et al. In vitro and in vivo toxicity, and biodistribution of paclitaxel-loaded cubosomes as a drug delivery nanocarrier:a case study using an A431 skin cancer xenograft model. ACS Applied Bio Materials 2020;3:4198-207.
116. Tian Y, Li JC, Zhu JX, Zhu N, Zhang HM, Liang L, et al. Folic acidtargeted etoposide cubosomes for theranostic application of cancer cell imaging and therapy. Med Sci Mon Int Med J Exp Clin Res 2017; 23:2426-35.
117. Grislain L, Couvreur P, Lenaerts V, Roland M, DeprezDecampeneere D, Speiser P. Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharm 1983;15:335-45.
118. Nilsson C, Barrios-Lopez B, Kallinen A, Laurinmaki P, Butcher SJ, Raki M, et al. SPECT/CT imaging of radiolabeled cubosomes and hexosomes for potential theranostic applications. Biomaterials 2013; 34:8491-503.
119. Moghimi SM. Modulation of lymphatic distribution of subcutaneously injected poloxamer 407-coated nanospheres:the effect of the ethylene oxide chain configuration. FEBS Lett 2003;545:260.
Similar articles:
1.Baode Shen, Chengying Shen, Weifeng Zhu, Hailong Yuan.The contribution of absorption of integral nanocrystals to enhancement of oral bioavailability of quercetin[J]. Acta Pharmaceutica Sinica B, 2021,11(4): 978-988
Similar articles: