Reviews
Yongchao Wang, Jinjin Wang, Dandan Zhu, Yufei Wang, Guangchao Qing, Yuxuan Zhang, Xiaoxuan Liu, Xing-Jie Liang. Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies[J]. Acta Pharmaceutica Sinica B, 2021, 11(4): 886-902

Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies
Yongchao Wanga,b,c, Jinjin Wangb,c, Dandan Zhua, Yufei Wangb,c, Guangchao Qingb,c, Yuxuan Zhangb,c, Xiaoxuan Liua, Xing-Jie Liangb,c
a State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceutics and Biomaterials, China Pharmaceutical University, Nanjing 210009, China;
b Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences(CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China;
c University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
Current advances of immunotherapy have greatly changed the way of cancer treatment. At the same time, a great number of nanoparticle-based cancer immunotherapies (NBCIs) have also been explored to elicit potent immune responses against tumors. However, few NBCIs are nearly in the clinical trial which is mainly ascribed to a lack understanding of in vivo fate of nanoparticles (NPs) for cancer immunotherapy. NPs for cancer immunotherapy mainly target the immune organs or immune cells to enable efficient antitumor immune responses. The physicochemical properties of NPs including size, shape, elasticity and surface properties directly affect their interaction with immune systems as well as their in vivo fate and therapeutic effect. Hence, systematic analysis of the physicochemical properties and their effect on in vivo fate is urgently needed. In this review, we first recapitulate the fundamentals for the in vivo fate of NBCIs including physio-anatomical features of lymphatic system and strategies to modulate immune responses. Moreover, we highlight the effect of physicochemical properties on their in vivo fate including lymph nodes (LNs) drainage, cellular uptake and intracellular transfer. Challenges and opportunities for rational design of NPs for cancer immunotherapy are also discussed in detail.
Key words:    Physicochemical properties    Nanoparticle-based cancer immunotherapies    Cancer treatment    In vivo fate    Immune responses    Lymph nodes drainage    Cellular uptake    Intracellular transfer   
Received: 2020-10-26     Revised: 2020-12-25
DOI: 10.1016/j.apsb.2021.03.007
Funds: This work was supported by National Key Research & Development Program of China (Grant No. 2018YFE0117800, China), the National Natural Science Foundation of China (NSFC) key projects (grant No. 31630027, 32030060, 51773227 and 81701815, China), NSFC international collaboration key project (Grant No. 51861135103, China) and NSFC-German Research Foundation (DFG) project (Grant No. 31761133013, China). The authors also appreciate the support by "the Beijing-Tianjin-Hebei Basic Research Cooperation Project" (19JCZDJC64100, China), and the Youth Thousand-Talents Program of China.
Corresponding author: Xiaoxuan Liu, xiaoxuanliucpu@163.com;Xing-Jie Liang, liangxj@nanoctr.cn     Email:xiaoxuanliucpu@163.com;liangxj@nanoctr.cn
Author description:
Service
PDF(KB) Free
Print
0
Authors
Yongchao Wang
Jinjin Wang
Dandan Zhu
Yufei Wang
Guangchao Qing
Yuxuan Zhang
Xiaoxuan Liu
Xing-Jie Liang

References:
1. Armstrong-James D, Brown GD, Netea MG, Zelante T, Gresnigt MS, van de Veerdonk FL, et al. Immunotherapeutic approaches to treatment of fungal diseases. Lancet Infect Dis 2017;17:e393-402.
2. Look M, Bandyopadhyay A, Blum JS, Fahmy TM. Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv Drug Deliv Rev 2010;62:378-93.
3. Caspi RR. Immunotherapy of autoimmunity and cancer:the penalty for success. Nat Rev Immunol 2008;8:970-6.
4. Rosenblum MD, Gratz IK, Paw JS, Abbas AK. Treating human autoimmunity:current practice and future prospects. Sci Transl Med 2012;4:10.
5. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 2011;480:480-9.
6. Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy:from enhancement to normalization. Cell 2018;175:313-26.
7. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017;547:217-21.
8. van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief AJM. Vaccines for established cancer:overcoming the challenges posed by immune evasion. Nat Rev Cancer 2016;16:219-33.
9. Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015;348:56-61.
10. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-64.
11. June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med 2018;379:64-73.
12. Ma L, Dichwalkar T, Chang JYH, Cossette B, Garafola D, Zhang AQ, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 2019; 365:162-8.
13. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castrationresistant prostate cancer. N Engl J Med 2010;363:411-22.
14. Graff JN, Chamberlain ED. Sipuleucel-T in the treatment of prostate cancer:an evidence-based review of its place in therapy. Core Evid 2014;10:1-10.
15. Maleki Vareki S, Garrigós C, Duran I. Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol Hematol 2017;116:116-24.
16. Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the immune-related adverse effects of immune checkpoint inhibitors:a review. JAMA Oncology 2016;2:1346-53.
17. Naidoo J, Wang X, Woo KM, Iyriboz T, Halpenny D, Cunningham J, et al. Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J Clin Oncol 2017;35:709-17.
18. Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol 2016;13:473-86.
19. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 2016;7:10501.
20. Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun 2017;8:1136.
21. Newick K, Moon E, Albelda SM. Chimeric antigen receptor T-cell therapy for solid tumors. Mol Ther Oncolytics 2016;3:16006.
22. O'Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9:eaaa0984.
23. Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 2018;24:731-8.
24. Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 2018;24:739-48.
25. Peer D, Karp JM, Hong S, FaroKhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751-60.
26. Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 2016;116:2826-85.
27. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010;9:615.
28. Shi JJ, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine:progress, challenges and opportunities. Nat Rev Cancer 2017;17:20-37.
29. van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nanomedicine. Nat Nanotechnol 2019;14:1007-17.
30. Barenholz Y. Doxil®-the first FDA-approved nano-drug:lessons learned. J Control Release 2012;160:117-34.
31. Gradishar WJ. Albumin-bound paclitaxel:a next-generation taxane. Expet Opin Pharmacother 2006;7:1041-53.
32. Lancet JE, Cortes JE, Hogge DE, Tallman MS, Kovacsovics TJ, Damon LE, et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood 2014;123:3239-46.
33. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019;18:175-96.
34. Milling L, Zhang Y, Irvine DJ. Delivering safer immunotherapies for cancer. Adv Drug Deliv Rev 2017;114:79-101.
35. Wang H, Mooney DJ. Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nat Mater 2018;17:761-72.
36. Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater 2017;16:489-96.
37. Moon JJ, Suh H, Bershteyn A, Stephan MT, Liu H, Huang B, et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat Mater 2011; 10:243-51.
38. Lynn GM, Laga R, Darrah PA, Ishizuka AS, Balaci AJ, Dulcey AE, et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat Biotechnol 2015;33:1201-10.
39. Yu S, Wang C, Yu J, Wang J, Lu Y, Zhang Y, et al. Injectable bioresponsive gel depot for enhanced immune checkpoint blockade. Adv Mater 2018;30:e1801527.
40. Galstyan A, Markman JL, Shatalova ES, Chiechi A, Korman AJ, Patil R, et al. Blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nat Commun 2019;10:3850.
41. Shimizu T, Kishida T, Hasegawa U, Ueda Y, Imanishi J, Yamagishi H, et al. Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy. Biochem Biophys Res Commun 2008;367:330-5.
42. Mishra P, Nayak B, Dey RK. PEGylation in anti-cancer therapy:an overview. Asian J Pharm Sci 2016;11:337-48.
43. Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol 2020;20:321-34.
44. Auría-Soro C, Nesma T, Juanes-Velasco P, Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, et al. Interactions of nanoparticles and biosystems:microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials 2019;9:1365.
45. Wang B, He X, Zhang Z, Zhao Y, Feng W. Metabolism of nanomaterials in vivo:blood circulation and organ clearance. Acc Chem Res 2013;46:761-9.
46. Huo D, Jiang X, Hu Y. Recent advances in nanostrategies capable of overcoming biological barriers for tumor management. Adv Mater 2020;32:e1904337.
47. Zhao ZM, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev 2019;143:3-21.
48. Ernsting MJ, Murakami M, Roy A, Li SD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release 2013;172:782-94.
49. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015;33:941-51.
50. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O'Neil CP, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 2007;25:1159-64.
51. Kumar S, Anselmo AC, Banerjee A, Zakrewsky M, Mitragotri S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release 2015;220:141-8.
52. O'Neill NA, Eppler HB, Jewell CM, Bromberg JS. Harnessing the lymph node microenvironment. Curr Opin Organ Transplant 2018; 23:73-82.
53. Girard J-P, Moussion C, Förster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 2012;12:762-73.
54. Andorko JI, Hess KL, Jewell CM. Harnessing biomaterials to engineer the lymph node microenvironment for immunity or tolerance. AAPS J 2015;17:323-38.
55. Thomas SN, Schudel A. Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery. Curr Opin Chem Eng 2015;7:65-74.
56. Bahmani B, Vohra I, Kamaly N, Abdi R. Active targeted delivery of immune therapeutics to lymph nodes. Curr Opin Organ Transplant 2018;23:8.
57. Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviourdtargeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov 2015;14:781-803.
58. Miao L, Li L, Huang Y, Delcassian D, Chahal J, Han J, et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat Biotechnol 2019;37:1174-85.
59. Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, et al. A STINGactivating nanovaccine for cancer immunotherapy. Nat Nanotechnol 2017;12:648-54.
60. Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 2014;507:519-22.
61. Wilson DS, Hirosue S, Raczy MM, Bonilla-Ramirez L, Jeanbart L, Wang R, et al. Antigens reversibly conjugated to a polymeric glycoadjuvant induce protective humoral and cellular immunity. Nat Mater 2019;18:175-85.
62. Li AW, Sobral MC, Badrinath S, Choi Y, Graveline A, Stafford AG, et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat Mater 2018;17:528-34.
63. Chen Daniel S, Mellman I. Oncology meets immunology:the cancerimmunity cycle. Immunity 2013;39:1-10.
64. Hong E, Dobrovolskaia MA. Addressing barriers to effective cancer immunotherapy with nanotechnology:achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics. Adv Drug Deliv Rev 2019;141:3-22.
65. Yu JX, Hubbard-Lucey VM, Tang J. Immuno-oncology drug development goes global. Nat Rev Drug Discov 2019;18:899-900.
66. Li J, Burgess DJ. Nanomedicine-based drug delivery towards tumor biological and immunological microenvironment. Acta Pharm Sin B 2020;10:2110-24.
67. Zhu Y, Yu X, Thamphiwatana SD, Zheng Y, Pang Z. Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy. Acta Pharm Sin B 2020;10:2054-74.
68. Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R, et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater 2012;11:895-905.
69. Schmid D, Park CG, Hartl CA, Subedi N, Cartwright AN, Puerto RB, et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat Commun 2017;8:1747.
70. Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat Med 2010;16:1035-41.
71. Zheng Y, Stephan MT, Gai SA, Abraham W, Shearer A, Irvine DJ. In vivo targeting of adoptively transferred T-cells with antibody- and cytokine-conjugated liposomes. J Control Release 2013;172:426-35.
72. Tang L, Zheng Y, Melo MB, Mabardi L, Castaño AP, Xie YQ, et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol 2018;36:707-16.
73. Wang C, Wang J, Zhang X, Yu S, Wen D, Hu Q, et al. In situ formed reactive oxygen specieseresponsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci Transl Med 2018; 10:eaan3682.
74. Meir R, Shamalov K, Sadan T, Motiei M, Yaari G, Cohen CJ, et al. Fast image-guided stratification using anti-programmed death ligand 1 gold nanoparticles for cancer Immunotherapy. ACS Nano 2017;11:11127-34.
75. Francis DM, Thomas SN. Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Adv Drug Deliv Rev 2017;114:33-42.
76. Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol 2017;12:813-20.
77. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 2018;24:541-50.
78. Martin JD, Cabral H, Stylianopoulos T, Jain RK. Improving cancer immunotherapy using nanomedicines:progress, opportunities and challenges. Nat Rev Clin Oncol 2020;17:251-66.
79. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumourassociated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017;14:399-416.
80. Zhan X, Jia L, Niu Y, Qi H, Chen X, Zhang Q, et al. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials 2014;35:10046-57.
81. Shen S, Li HJ, Chen KG, Wang Y, Wang J. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemo-immunotherapy. Nano Lett 2017;17:3822-9.
82. Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, et al. Iron oxide nanoparticles inhibit tumour growth by inducing proinflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 2016;11:986-94.
83. Wang Y, Lin YX, Qiao SL, An HW, Ma Y, Qiao ZY, et al. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials 2017;112:153-63.
84. Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol 2016;17:1025-36.
85. Loftus C, Saeed M, Davis DM, Dunlop IE. Activation of human natural killer cells by graphene oxide-templated antibody nanoclusters. Nano Lett 2018;18:3282-9.
86. Griffe L, Poupot M, Marchand P, Maraval A, Turrin CO, Rolland O, et al. Multiplication of human natural killer cells by nanosized phosphonate-capped dendrimers. Angew Chem Int Ed 2007;46:2523-6.
87. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic GR-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 2005;11:6713-21.
88. Long Y, Lu ZZ, Xu SS, Li M, Wang XH, Zhang ZR, et al. Self-Delivery Micellar Nanoparticles prevent premetastatic niche formation by interfering with the early recruitment and vascular destruction of granulocytic myeloid-derived suppressor cells. Nano Lett 2020;20:2219-29.
89. Sasso MS, Lollo G, Pitorre M, Solito S, Pinton L, Valpione S, et al. Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy. Biomaterials 2016;96:47-62.
90. Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev 2001;50:3-20.
91. Schudel A, Francis DM, Thomas SN. Material design for lymph node drug delivery. Nat Rev Mater 2019;4:415-28.
92. Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine delivery systems:size matters. AAPS J 2013;15:85-94.
93. Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release 2006;112:26-34.
94. Nishioka Y, Yoshino H. Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev 2001;47:55-64.
95. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 2008;38:1404-13.
96. Ryan GM, Kaminskas LM, Porter CJH. Nano-chemotherapeutics:maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J Control Release 2014;193:241-56.
97. Irvine DJ, Swartz MA, Szeto GL. Engineering synthetic vaccines using cues from natural immunity. Nat Mater 2013;12:978-90.
98. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 2015;115:11109-46.
99. Kaminskas LM, Porter CJH. Targeting the lymphatics using dendritic polymers (dendrimers). Adv Drug Deliv Rev 2011;63:890-900.
100. Kobayashi H, Kawamoto S, Bernardo M, Brechbiel MW, Knopp MV, Choyke PL. Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node:comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging. J Control Release 2006;111:343-51.
101. Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport:physiological regulation and roles in inflammation and cancer. Physiol Rev 2012;92:1005-60.
102. Jiang H, Wang Q, Sun X. Lymph node targeting strategies to improve vaccination efficacy. J Control Release 2017;267:47-56.
103. Doddapaneni BS, Kyryachenko S, Chagani SE, Alany RG, Rao DA, Indra AK, et al. A three-drug nanoscale drug delivery system designed for preferential lymphatic uptake for the treatment of metastatic melanoma. J Control Release 2015;220:503-14.
104. Tseng Y-C, Xu Z, Guley K, Yuan H, Huang L. Lipid-calcium phosphate nanoparticles for delivery to the lymphatic system and SPECT/CT imaging of lymph node metastases. Biomaterials 2014; 35:4688-98.
105. Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol 2017;12:877-82.
106. Stylianopoulos T, Poh MZ, Insin N, Bawendi MG, Fukumura D, Munn Lance L, et al. Diffusion of particles in the extracellular matrix:the effect of repulsive electrostatic Interactions. Biophys J 2010; 99:1342-9.
107. Rao DA, Forrest ML, Alani AWG, Kwon GS, Robinson JR. Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery. J Pharmacol Sci 2010;99:2018-31.
108. Guo P, Liu DX, Subramanyam K, Wang BR, Yang J, Huang J, et al. Nanoparticle elasticity directs tumor uptake. Nat Commun 2018;9.
109. Anselmo AC, Mitragotri S. Impact of particle elasticity on particlebased drug delivery systems. Adv Drug Deliv Rev 2017;108:51-67.
110. Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019;143:68-96.
111. Xia YF, Wu J, Wei W, Du YQ, Wan T, Ma XW, et al. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nat Mater 2018;17:187-94.
112. Christensen D, Henriksen-Lacey M, Kamath AT, Lindenstrøm T, Korsholm KS, Christensen JP, et al. A cationic vaccine adjuvant based on a saturated quaternary ammonium lipid have different in vivo distribution kinetics and display a distinct CD4 T cellinducing capacity compared to its unsaturated analog. J Control Release 2012;160:468-76.
113. Kumari S, Mg S, Mayor S. Endocytosis unplugged:multiple ways to enter the cell. Cell Res 2010;20:256-75.
114. Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011;7:1322-37.
115. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003;422:37-44.
116. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles:journey inside the cell. Chem Soc Rev 2017;46:4218-44.
117. Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 2013;46:622-31.
118. Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 2005;298:315-22.
119. Liu YC, Hardie J, Zhang XZ, Rotello VM. Effects of engineered nanoparticles on the innate immune system. Semin Immunol 2017;34:25-32.
120. Tomić S, Ðokić J, Vasilijić S, Ogrinc N, Rudolf R, Pelicon P, et al. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS One 2014;9. e96584-e84.
121. Kuhn D, Vanhecke D, Michen B, Blank F, Gehr P, Fink A, et al. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J Nanotechnol 2014;5:1625-36.
122. Gu J, Xu H, Han Y, Dai W, Hao W, Wang C, et al. The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell. Sci China Life Sci 2011;54:793-805.
123. Dasgupta S, Auth T, Gompper G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett 2014;14:687-93.
124. Toy R, Peiris PM, Ghaghada KB, Karathanasis E. Shaping cancer nanomedicine:the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 2014;9:121-34.
125. Arnida, Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells:a comparative study of rods and spheres. J Appl Toxicol 2010;30:212-7.
126. Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006;6:662-8.
127. Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci U S A 2013;110:17247-52.
128. Niikura K, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, et al. Gold nanoparticles as a vaccine platform:influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 2013;7:3926-38.
129. Yi X, Gao H. Phase diagrams and morphological evolution in wrapping of rod-shaped elastic nanoparticles by cell membrane:a two-dimensional study. Phys Rev 2014;89:062712.
130. Li Z, Sun L, Zhang Y, Dove AP, O'Reilly RK, Chen G. Shape effect of glyco-nanoparticles on macrophage cellular uptake and immune response. ACS Macro Lett 2016;5:1059-64.
131. Wang J, Chen H-J, Hang T, Yu Y, Liu G, He G, et al. Physical activation of innate immunity by spiky particles. Nat Nanotechnol 2018;13:1078-86.
132. Vold MJ. Zeta potential in colloid science. Principles and applications. J Colloid Interface Sci 1982;88. 608-08.
133. Vigderman L, Manna P, Zubarev ER. Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells. Angew Chem Int Ed 2012;51:636-41.
134. Ngamcherdtrakul W, Morry J, Gu S, Castro DJ, Goodyear SM, Sangvanich T, et al. Cationic polymer modified mesoporous silica nanoparticles for targeted sirna delivery to HER2+ breast cancer. Adv Funct Mater 2015;25:2646-59.
135. Jiang Y, Huo S, Mizuhara T, Das R, Lee YW, Hou S, et al. The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanoparticles. ACS Nano 2015;9:9986-93.
136. Yue ZG, Wei W, Lv PP, Yue H, Wang LY, Su ZG, et al. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 2011;12:2440-6.
137. Fytianos K, Chortarea S, Rodriguez-Lorenzo L, Blank F, von Garnier C, Petri-Fink A, et al. Aerosol delivery of functionalized gold nanoparticles target and activate dendritic cells in a 3D lung cellular model. ACS Nano 2017;11:375-83.
138. Mou Y, Xing Y, Ren H, Cui Z, Zhang Y, Yu G, et al. The effect of superparamagnetic iron oxide nanoparticle surface charge on antigen cross-presentation. Nanoscale Res Lett 2017;12:52.
139. Palomba R, Palange AL, Rizzuti IF, Ferreira M, Cervadoro A, Barbato MG, et al. Modulating phagocytic cell sequestration by tailoring nanoconstruct softness. ACS Nano 2018;12:1433-44.
140. Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y, et al. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 2018;12:5121-9.
141. Cruz LJ, Rosalia RA, Kleinovink JW, Rueda F, Löwik CWGM, Ossendorp F. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8+ T cell response:a comparative study. J Control Release 2014;192:209-18.
142. Chou LYT, Ming K, Chan WCW. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2011;40:233-45.
143. Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature 2016; 538:183-92.
144. Stewart MP, Lorenz A, Dahlman J, Sahay G. Challenges in carriermediated intracellular delivery:moving beyond endosomal barriers. WIREs Nanomed Nanobiotechnol 2016;8:465-78.
145. Huang LY, Germain RN. MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8. Nature 1992;356:796-8.
146. Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011;11:823-36.
147. Ackerman AL, Cresswell P. Cellular mechanisms governing crosspresentation of exogenous antigens. Nat Immunol 2004;5:678-84.
148. Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol 2012;12:557-69.
149. Gong N, Zhang Y, Teng X, Wang Y, Huo S, Qing G, et al. Protondriven transformable nanovaccine for cancer immunotherapy. Nat Nanotechnol 2020;15:1053-64.
150. Xu J, Lv J, Zhuang Q, Yang Z, Cao Z, Xu L, et al. A general strategy towards personalized nanovaccines based on fluoropolymers for postsurgical cancer immunotherapy. Nat Nanotechnol 2020;15:1043-52.
151. Liu S, Jiang Q, Zhao X, Zhao R, Wang Y, Wang Y, et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat Mater 2021;20:421-30.
152. Keller S, Wilson JT, Patilea GI, Kern HB, Convertine AJ, Stayton PS. Neutral polymer micelle carriers with pH-responsive, endosomereleasing activity modulate antigen trafficking to enhance CD8+ T cell responses. J Control Release 2014;191:24-33.
153. Hu Y, Litwin T, Nagaraja AR, Kwong B, Katz J, Watson N, et al. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett 2007;7:3056-64.
154. Waeckerle-Men Y, Mauracher A, Håkerud M, Mohanan D, Kündig TM, Høgset A, et al. Photochemical targeting of antigens to the cytosol for stimulation of MHC class-I-restricted T-cell responses. Eur J Pharm Biopharm 2013;85:34-41.
155. Vasdekis AE, Scott EA, O'Neil CP, Psaltis D, Hubbell JA. Precision intracellular delivery based on optofluidic polymersome rupture. ACS Nano 2012;6:7850-7.
156. Huo M, Yuan J, Tao L, Wei Y. Redox-responsive polymers for drug delivery:from molecular design to applications. Polym Chem 2014;5:1519-28.
157. Liu L, Rui L, Gao Y, Zhang W. Self-assembly and disassembly of a redox-responsive ferrocene-containing amphiphilic block copolymer for controlled release. Polym Chem 2015;6:1817-29.
158. Pillay CS, Elliott E, Dennison C. Endolysosomal proteolysis and its regulation. Biochem J 2002;363:417-29.
159. Sauer AM, Schlossbauer A, Ruthardt N, Cauda V, Bein T, Bräuchle C. Role of endosomal escape for disulfide-based drug delivery from colloidal mesoporous silica evaluated by live-cell imaging. Nano Lett 2010;10:3684-91.
160. Wu M, Meng Q, Chen Y, Zhang L, Li M, Cai X, et al. Large poresized hollow mesoporous organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy. Adv Mater 2016;28:1963-9.
161. Li P, Luo Z, Liu P, Gao N, Zhang Y, Pan H, et al. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J Control Release 2013;168:271-9.
Similar articles: