Samrat Mazumdar, Deepak Chitkara, Anupama Mittal. Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers[J]. Acta Pharmaceutica Sinica B, 2021, 11(4): 903-924

Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers
Samrat Mazumdar, Deepak Chitkara, Anupama Mittal
Department of Pharmacy, Birla Institute of Technology and Science(BITS-PILANI), Pilani, Rajasthan 333031, India
The beneficial or deleterious effects of nanomedicines emerge from their complex interactions with intracellular pathways and their subcellular fate. Moreover, the dynamic nature of plasma membrane accounts for the movement of these nanocarriers within the cell towards different organelles thereby not only influencing their pharmacokinetic and pharmacodynamic properties but also bioavailability, therapeutic efficacy and toxicity. Therefore, an in-depth understanding of underlying parameters controlling nanocarrier endocytosis and intracellular fate is essential. In order to direct nanoparticles towards specific sub-cellular organelles the physicochemical attributes of nanocarriers can be manipulated. These include particle size, shape and surface charge/chemistry. Restricting the particle size of nanocarriers below 200 nm contributes to internalization via clathrin and caveolae mediated pathways. Similarly, a moderate negative surface potential confers endolysosomal escape and targeting towards mitochondria, endoplasmic reticulum (ER) and Golgi. This review aims to provide an insight into these physicochemical attributes of nanocarriers fabricated using amphiphilic graft copolymers affecting cellular internalization. Fundamental principles understood from experimental studies have been extrapolated to draw a general conclusion for the designing of optimized nanoparticulate drug delivery systems and enhanced intracellular uptake via specific endocytic pathway.
Key words:    Amphiphilic    Copolymer    Nanoparticles    Internalization    Intracellular fate   
Received: 2020-10-19     Revised: 2020-12-20
DOI: 10.1016/j.apsb.2021.02.019
Funds: This work was financially sponsored by extramural research funding support from Department of Science and Technology, Rajasthan (Project #P.7 (3) Wipro/R&D/2016/6009, India). The authors have no other relevant affiliation or financial support with any organization with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. We also acknowledge Biorender for their technical support in the creation of the figures.
Corresponding author: Anupama Mittal,
Author description:
PDF(KB) Free
Samrat Mazumdar
Deepak Chitkara
Anupama Mittal

1. Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar RodriguezTorres M, Acosta-Torres LS, et al. Nano based drug delivery systems:recent developments and future prospects. J Nanobiotechnol 2018; 16:71.
2. Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016:a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomed 2017;9:e1416.
3. Meng H, Leong W, Leong KW, Chen C, Zhao Y. Walking the line:the fate of nanomaterials at biological barriers. Biomaterials 2018; 174:41-53.
4. Chakraborty A, Jana NR. Clathrin to lipid raft-endocytosis via controlled surface chemistry and efficient perinuclear targeting of nanoparticle. J Phys Chem Lett 2015;6:3688-97.
5. Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019;143:68-96.
6. Agudo-Canalejo J, Lipowsky R. Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry. ACS Nano 2015;9:3704-20.
7. Wu LG, Hamid E, Shin W, Chiang HC. Exocytosis and endocytosis:modes, functions, and coupling mechanisms. Annu Rev Physiol 2014; 76:301-31.
8. Zhang B, Koh YH, Beckstead RB, Budnik V, Ganetzky B, Bellen HJ. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 1998;21:1465-75.
9. Miller SE, Sahlender DA, Graham SC, Höning S, Robinson MS, Peden AA, et al. The molecular basis for the endocytosis of small RSNAREs by the clathrin adaptor CALM. Cell 2011;147:1118-31.
10. Cremaschi D, Porta C, Ghirardelli R, Manzoni C, Caremi I. Endocytosis inhibitors abolish the active transport of polypeptides in the mucosa of the nasal upper concha of the rabbit. Biochim Biophys Acta Biomembr 1996;1280:27-33.
11. Yang NJ, Hinner MJ. Getting across the cell membrane:an overview for small molecules, peptides, and proteins. In:Gautier A, Hinner M, editors. Site-specific protein labeling. Methods in molecular biology, vol. 1266. New York:Humana Press; 2015. p. 29-53.
12. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles:journey inside the cell. Chem Soc Rev 2017;46:4218-44.
13. Prietl B, Meindl C, Roblegg E, Pieber T, Lanzer G, Fröhlich E. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol Toxicol 2014;30:1-16.
14. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake:the phagocyte problem. Nano Today 2015;10:487-510.
15. Polando RE, Jones BC, Ricardo C, Whitcomb J, Ballhorn W, McDowell MA. Mannose receptor (MR) and Toll-like receptor 2 (TLR2) influence phagosome maturation during Leishmania infection. Parasite Immunol 2018;40:e12521.
16. Levin R, Grinstein S, Canton J. The life cycle of phagosomes:formation, maturation, and resolution. Immunol Rev 2016;273:156-79.
17. Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell 2018;19:313.
18. Sochacki KA, Dickey AM, Strub M-P, Taraska JW. Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat Cell Biol 2017;19:352-61.
19. Li R, Xie Y. Nanodrug delivery systems for targeting the endogenous tumor microenvironment and simultaneously overcoming multidrug resistance properties. J Control Release 2017;251:49-67.
20. Puangmalai N, Bhatt N, Montalbano M, Sengupta U, Gaikwad S, Ventura F, et al. Internalization mechanisms of brain-derived tau oligomers from patients with Alzheimer's disease, progressive supranuclear palsy and dementia with Lewy bodies. Cell Death Dis 2020;11:1-16.
21. Vykoukal J, Fahrmann J, Thompson T. Caveolin and lipid domainsclose companions in managing cellular pathways. Cancer Metastasis Rev 2020;39:341-2.
22. Parton RG, McMahon KA, Wu Y. Caveolae:formation, dynamics, and function. Curr Opin Cell Biol 2020;65:8-16.
23. Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as potential hijackable gates in cell communication. Front Cell Dev Biol 2020;8:581732.
24. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomed 2009;4:99.
25. Liu CG, Han YH, Kankala RK, Wang SB, Chen AZ. Subcellular performance of nanoparticles in cancer therapy. Int J Nanomed 2020; 15:675.
26. Recouvreux MV, Commisso C. Macropinocytosis:a metabolic adaptation to nutrient stress in cancer. Front Endocrinol 2017;8:261.
27. Stow JL, Hung Y, Wall AA. Macropinocytosis:insights from immunology and cancer. Curr Opin Cell Biol 2020;65:131-40.
28. Falcone S, Cocucci E, Podini P, Kirchhausen T, Clementi E, Meldolesi J. Macropinocytosis:regulated coordination of endocytic and exocytic membrane traffic events. J Cell Sci 2006;119:4758-69.
29. Ha KD, Bidlingmaier SM, Liu B. Macropinocytosis exploitation by cancers and cancer therapeutics. Front Physiol 2016;7:381.
30. Huang JL, Jiang G, Song QX, Gu X, Hu M, Wang XL, et al. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis. Nat Commun 2017;8:1-18.
31. Liu Z, Roche PA. Macropinocytosis in phagocytes:regulation of MHC class-II-restricted antigen presentation in dendritic cells. Front Physiol 2015;6:1.
32. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 2008;105:11613-8.
33. Zhang H, Ji Q, Huang C, Zhang S, Yuan B, Yang K, et al. Cooperative transmembrane penetration of nanoparticles. Sci Rep 2015;5:10525.
34. Shil P, Achary KB, Alagarasu K. Numerical analyses of electroporation-mediated doxorubicin uptake in eukaryotic cells:role of membrane cholesterol content. Indian J Biochem Biophys 2018; 55:52-61.
35. Remaut K, Oorschot V, Braeckmans K, Klumperman J, De Smedt SC. Lysosomal capturing of cytoplasmic injected nanoparticles by autophagy:an additional barrier to non viral gene delivery. J Control Release 2014;195:29-36.
36. Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures:micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 2007;65:259-69.
37. Alexandridis P. Amphiphilic copolymers and their applications. Curr Opin Colloid Interface Sci 1996;1:490-501.
38. Hanafy NA, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers 2018; 10:238.
39. Sant S, Poulin S, Hildgen P. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. J Biomed Mater Res 2008;87:885-95.
40. Chen J, Lin Y, Chen Y, Koning CE, Wu J, Wang H. Low-crystallinity to highly amorphous copolyesters with high glass transition temperatures based on rigid carbohydrate-derived building blocks. Polym Int 2021;70:536-45.
41. Martin C, Aibani N, Callan JF, Callan B. Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs. Ther Deliv 2016;7:15-31.
42. Xu Q, Li S, Yu C, Zhou Y. Self-assembly of amphiphilic alternating copolymers. Chem Eur J 2019;25:4255-64.
43. Varlas S, Lawrenson SB, Arkinstall LA, O'Reilly RK, Foster JC. Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog Polym Sci 2020;107:101278.
44. Henriksen-Lacey M, Carregal-Romero S, Liz-Marzán LM. Current challenges toward in vitro cellular validation of inorganic nanoparticles. Bioconjugate Chem 2017;28:212-21.
45. Roursgaard M, Knudsen KB, Northeved H, Persson M, Christensen T, Kumar PE, et al. In vitro toxicity of cationic micelles and liposomes in cultured human hepatocyte (HepG2) and lung epithelial (A549) cell lines. Toxicol Vitro 2016;36:164-71.
46. Knudsen KB, Northeved H, Ek PK, Permin A, Gjetting T, Andresen TL, et al. In vivo toxicity of cationic micelles and liposomes. Nanomedicine 2015;11:467-77.
47. Leupold E, Nikolenko H, Beyermann M, Dathe M. Insight into the role of HSPG in the cellular uptake of apolipoprotein E-derived peptide micelles and liposomes. Biochim Biophys Acta Biomembr 2008;1778:2781-9.
48. Iversen T-G, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles:present knowledge and need for future studies. Nano Today 2011;6:176-85.
49. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release 2010;145:182-95.
50. Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 2013;9:1521-32.
51. Jiang L, Li X, Liu L, Zhang Q. Cellular uptake mechanism and intracellular fate of hydrophobically modified pullulan nanoparticles. Int J Nanomed 2013;8:1825.
52. Liu P, Sun Y, Wang Q, Sun Y, Li H, Duan Y. Intracellular trafficking and cellular uptake mechanism of mPEG-PLGA-PLL and mPEGPLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas. Biomaterials 2014;35:760-70.
53. Xin H, Jiang X, Gu J, Sha X, Chen L, Law K, et al. Angiopepconjugated poly (ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 2011;32:4293-305.
54. Nam HY, Kwon SM, Chung H, Lee SY, Kwon SH, Jeon H, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release 2009;135:259-67.
55. Suen WLL, Chau Y. Size-dependent internalisation of folatedecorated nanoparticles via the pathways of clathrin and caveolaemediated endocytosis in ARPE-19 cells. J Pharm Pharmacol 2014; 66:564-73.
56. Zhao J, Stenzel MH. Entry of nanoparticles into cells:the importance of nanoparticle properties. Polym Chem 2018;9:259-72.
57. Hassan SA. Computational study of the forces driving aggregation of ultrasmall nanoparticles in biological fluids. ACS Nano 2017;11:4145-54.
58. Bhattacharjee S, Ershov D, Fytianos K, van der Gucht J, Alink GM, Rietjens IM, et al. Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics. Part Fibre Toxicol 2012;9:1-19.
59. Niu Y, Zhang B, Galluzzi M. An amphiphilic aggregate-induced emission polyurethane probe for in situ actin observation in living cells. J Colloid Interface Sci 2020;582:1191-202.
60. Verma A, Uzun O, Hu Y, Hu Y, Han H-S, Watson N, et al. Surfacestructure-regulated cell-membrane penetration by monolayerprotected nanoparticles. Nat Mater 2008;7:588-95.
61. Van Lehn RC, Alexander-Katz A. Energy landscape for the insertion of amphiphilic nanoparticles into lipid membranes:a computational study. PLoS One 2019;14:e0209492.
62. Van Lehn RC, Alexander-Katz A. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations. Soft Matter 2015;11:3165-75.
63. Wang Z, Wu Z, Liu J, Zhang W. Particle morphology:an important factor affecting drug delivery by nanocarriers into solid tumors. Expet Opin Drug Deliv 2018;15:379-95.
64. Huang C, Zhang Y, Yuan H, Gao H, Zhang S. Role of nanoparticle geometry in endocytosis:laying down to stand up. Nano Lett 2013; 13:4546-50.
65. Krauss M, Haucke V. Shaping membranes for endocytosis. In:Amara SG, Bamberg E, Fleischmann BK, Gudermann T, Jahn R, Lederer WJ, et al., editors. Reviews of physiology, biochemistry and pharmacology, vol. 161. Berlin:Springer; 2009. p. 45-66.
66. Li D, Tang Z, Gao Y, Sun H, Zhou S. A bio-inspired rod-shaped nanoplatform for strongly infecting tumor cells and enhancing the delivery efficiency of anticancer drugs. Adv Funct Mater 2016;26:66-79.
67. Hu X, Hu J, Tian J, Ge Z, Zhang G, Luo K, et al. Polyprodrug amphiphiles:hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J Am Chem Soc 2013; 135:17617-29.
68. Deng H, Dutta P, Liu J. Entry modes of ellipsoidal nanoparticles on a membrane during clathrin-mediated endocytosis. Soft Matter 2019; 15:5128-37.
69. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007;2:249-55.
70. Raman AS, Pajak J, Chiew Y. Interaction of PCL based selfassembled nano-polymeric micelles with model lipid bilayers using coarse-grained molecular dynamics simulations. Chem Phys Lett 2018;712:1-6.
71. Van Lehn RC, Atukorale PU, Carney RP, Yang YS, Stellacci F, Irvine DJ, et al. Effect of particle diameter and surface composition on the spontaneous fusion of monolayer-protected gold nanoparticles with lipid bilayers. Nano Lett 2013;13:4060-7.
72. Gkeka P, Angelikopoulos P, Sarkisov L, Cournia Z. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion. PLoS Comput Biol 2014;10:e1003917.
73. Zhang Z, Lin X, Gu N. Effects of temperature and PEG grafting density on the translocation of PEGylated nanoparticles across asymmetric lipid membrane. Colloids Surf, B 2017;160:92-100.
74. Wiemann JT, Shen Z, Ye H, Li Y, Yu Y. Membrane poration, wrinkling, and compression:deformations of lipid vesicles induced by amphiphilic Janus nanoparticles. Nanoscale 2020;12:20326-36.
75. Wang W, Zhang J, Li C, Huang P, Gao S, Han S, et al. Facile access to cytocompatible multicompartment micelles with adjustable Januscores from A-block-b-graft-C terpolymers prepared by combination of ROP and ATRP. Colloids Surf, B 2014;115:302-9.
76. Brendel JC, Sanchis J, Catrouillet S, Czuba E, Chen MZ, Long BM, et al. Secondary self-assembly of supramolecular nanotubes into tubisomes and their activity on cells. Angew Chem Int 2018;57:16678-82.
77. Cui F, Lin J, Li Y, Li Y, Wu H, Yu F, et al. Bacillus-shape design of polymer based drug delivery systems with Janus-faced function for synergistic targeted drug delivery and more effective cancer therapy. Mol Pharm 2015;12:1318-27.
78. Linares J, Matesanz MCn, Vila M, Feito MJ, Goncalves G, ValletRegí M, et al. Endocytic mechanisms of graphene oxide nanosheets in osteoblasts, hepatocytes and macrophages. ACS Appl Mater Interfaces 2014;6:13697-706.
79. Mao J, Chen P, Liang J, Guo R, Yan LT. Receptor-mediated endocytosis of two-dimensional nanomaterials undergoes flat vesiculation and occurs by revolution and self-rotation. ACS Nano 2016;10:1493-502.
80. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016;99:28-51.
81. Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 2014;190:485-99.
82. Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 2008;9:435-43.
83. Pang Z, Gao H, Chen J, Shen S, Zhang B, Ren J, et al. Intracellular delivery mechanism and brain delivery kinetics of biodegradable cationic bovine serum albumin-conjugated polymersomes. Int J Nanomed 2012;7:3421.
84. Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 2011;32:3435-46.
85. Bhattacharjee S, Ershov D, vdGucht J, Alink GM, Rietjens IMM, Zuilhof H, et al. Surface charge-specific cytotoxicity and cellular uptake of tri-block copolymer nanoparticles. Nanotoxicology 2013;7:71-84.
86. Fernandez-Rojo MA, Ramm GA. Caveolin-1 function in liver physiology and disease. Trends Mol Med 2016;22:889-904.
87. Liu YS, Cheng RY, Lo YL, Hsu C, Chen SH, Chiu CC, et al. Distinct CPT-induced deaths in lung cancer cells caused by clathrin-mediated internalization of CP micelles. Nanoscale 2016;8:3510-22.
88. Zhou Z, Li L, Yang Y, Xu X, Huang Y. Tumor targeting by pHsensitive, biodegradable, cross-linked N-(2-hydroxypropyl) methacrylamide copolymer micelles. Biomaterials 2014;35:6622-35.
89. Qiu L, Shan X, Long M, Ahmed KS, Zhao L, Mao J, et al. Elucidation of cellular uptake and intracellular trafficking of heparosan polysaccharide-based micelles in various cancer cells. Int J Biol Macromol 2019;130:755-64.
90. Hu X, Yang FF, Liu CY, Ehrhardt C, Liao YH. In vitro uptake and transport studies of PEG-PLGA polymeric micelles in respiratory epithelial cells. Eur J Pharm Biopharm 2017;114:29-37.
91. Serpooshan V, Sheibani S, Pushparaj P, Wojcik M, Jang AY, Santoso MR, et al. Effect of cell sex on uptake of nanoparticles:the overlooked factor at the nanobio interface. ACS Nano 2018;12:2253-66.
92. Foroozandeh P, Aziz AA, Mahmoudi M. Effect of cell age on uptake and toxicity of nanoparticles:the overlooked factor at the nanobio interface. ACS Appl Mater Interfaces 2019;11:39672-87.
93. Farvadi F, Ghahremani MH, Hashemi F, Hormozi-Nezhad MR, Raoufi M, Zanganeh S, et al. Cell shape affects nanoparticle uptake and toxicity:an overlooked factor at the nanobio interfaces. J Colloid Interface Sci 2018;531:245-52.
94. Yang C, Gao S, Dagnæs-Hansen F, Jakobsen M, Kjems J. Impact of PEG chain length on the physical properties and bioactivity of PEGylated chitosan/siRNA nanoparticles in vitro and. in vivo. ACS Appl Mater Interfaces 2017;9:12203-16.
95. Ibricevic A, Guntsen SP, Zhang K, Shrestha R, Liu Y, Sun JY, et al. PEGylation of cationic, shell-crosslinked-knedel-like nanoparticles modulates inflammation and enhances cellular uptake in the lung. Nanomedicine 2013;9:912-22.
96. Guo P, Liu D, Subramanyam K, Wang B, Yang J, Huang J, et al. Nanoparticle elasticity directs tumor uptake. Nat Commun 2018;9:1-9.
97. Li Y, Kröger M, Liu WK. Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Biomaterials 2014;35:8467-78.
98. Lee SY, Tyler JY, Kim S, Park K, Cheng JX. FRET imaging reveals different cellular entry routes of self-assembled and disulfide bonded polymeric micelles. Mol Pharm 2013;10:3497-506.
99. Kim Y, Pourgholami MH, Morris DL, Lu H, Stenzel MH. Effect of shell-crosslinking of micelles on endocytosis and exocytosis:acceleration of exocytosis by crosslinking. Biomater Sci 2013;1:265-75.
100. Sahay G, Kim JO, Kabanov AV, Bronich TK. The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents. Biomaterials 2010;31:923-33.
101. Gündel D, Allmeroth M, Reime S, Zentel R, Thews O. Endocytotic uptake of HPMA-based polymers by different cancer cells:impact of extracellular acidosis and hypoxia. Int J Nanomed 2017;12:5571.
102. Deshmukh AS, Chauhan PN, Noolvi MN, Chaturvedi K, Ganguly K, Shukla SS, et al. Polymeric micelles:basic research to clinical practice. Int J Pharm 2017;532:249-68.
103. Sahay G, Batrakova EV, Kabanov AV. Different internalization pathways of polymeric micelles and unimers and their effects on vesicular transport. Bioconjugate Chem 2008;19:2023-9.
104. Arranja A, Denkova AG, Morawska K, Waton G, Van Vlierberghe S, Dubruel P, et al. Interactions of Pluronic nanocarriers with 2D and 3D cell cultures:effects of PEO block length and aggregation state. J Control Release 2016;224:126-35.
105. Miura S, Suzuki H, Bae YH. A multilayered cell culture model for transport study in solid tumors:evaluation of tissue penetration of polyethyleneimine based cationic micelles. Nano Today 2014;9:695-704.
106. Aydin F, Chu X, Uppaladadium G, Devore D, Goyal R, Murthy NS, et al. Self-assembly and critical aggregation concentration measurements of ABA triblock copolymers with varying B block types:model development, prediction, and validation. J Phys Chem B 2016; 120:3666-76.
107. Guan Z, Wang L, Lin J. Interaction pathways between plasma membrane and block copolymer micelles. Biomacromolecules 2017; 18:797-807.
108. You J, Hu FQ, Du YZ, Yuan H. Polymeric micelles with glycolipidlike structure and multiple hydrophobic domains for mediating molecular target delivery of paclitaxel. Biomacromolecules 2007;8:2450-6.
109. Bertrand N, Grenier P, Mahmoudi M, Lima EM, Appel EA, Dormont F, et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun 2017;8:1-8.
110. Gunawan C, Lim M, Marquis CP, Amal R. Nanoparticleeprotein corona complexes govern the biological fates and functions of nanoparticles. J Mater Chem B 2014;2:2060-83.
111. Papini E, Tavano R, Mancin F. Opsonins and dysopsonins of nanoparticles:facts, concepts, and methodological guidelines. Front Immunol 2020;11:2343.
112. Karmali PP, Simberg D. Interactions of nanoparticles with plasma proteins:implication on clearance and toxicity of drug delivery systems. Expet Opin Drug Deliv 2011;8:343-57.
113. Ogawara KI, Furumoto K, Nagayama S, Minato K, Higaki K, Kai T, et al. Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere:implications for rational design of nanoparticles. J Control Release 2004;100:451-5.
114. Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, KochBrandt C, et al. Apolipoprotein-mediated transport of nanoparticlebound drugs across the blood-brain barrier. J Drug Target 2002; 10:317-25.
115. de Castro CE, Panico K, Stangherlin LM, Ribeiro CA, da Silva MC, Carneiro-Ramos MS, et al. The protein corona conundrum:exploring the advantages and drawbacks of its presence around amphiphilic nanoparticles. Bioconjugate Chem 2020;31:2638-47.
116. Zheng T, Jäättelä M, Liu B. pH gradient reversal fuels cancer progression. Int J Biochem Cell Biol 2020;125:105796.
117. Tang H, Zhao W, Yu J, Li Y, Zhao C. Recent development of pH-responsive polymers for cancer nanomedicine. Molecules 2019;24:4.
118. Ding HM, Ma YQ. Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Sci Rep 2013;3:2804.
119. Yang Y, Cai J, Zhuang X, Guo Z, Jing X, Chen X. pH-dependent selfassembly of amphiphilic poly(l-glutamic acid)-block-poly(lactic-coglycolic acid) copolymers. Polymer 2010;51:2676-82.
120. Mondal B, Pandey B, Parekh N, Panda S, Dutta T, Padhy A, et al. Amphiphilic mannose-6-phosphate glycopolypeptide-based bioactive and responsive self-assembled nanostructures for controlled and targeted lysosomal cargo delivery. Biomater Sci 2020;8:6322-36.
121. Zhong XC, Xu WH, Wang ZT, Guo WW, Chen JJ, Guo NN, et al. Doxorubicin derivative loaded acetal-PEG-PCCL micelles for overcoming multidrug resistance in MCF-7/ADR cells. Drug Dev Ind Pharm 2019;45:1556-64.
122. Momekova D, Ugrinova I, Slavkova M, Momekov G, Grancharov G, Gancheva V, et al. Superior proapoptotic activity of curcumin-loaded mixed block copolymer micelles with mitochondrial targeting properties. Biomater Sci 2018;6:3309-17.
123. Chen Y, Feng X, Li L, Song K, Zhang L. Preparation and antitumor evaluation of hinokiflavone hybrid micelles with mitochondria targeted for lung adenocarcinoma treatment. Drug Deliv 2020;27:565-74.
124. Debnath K, Jana NR, Jana NR. Designed polymer micelle for clearing amyloid protein aggregates via up-regulated autophagy. ACS Biomater Sci Eng 2018;5:390-401.
125. Qu X, Zou Y, He C, Zhou Y, Jin Y, Deng Y, et al. Improved intestinal absorption of paclitaxel by mixed micelles self-assembled from vitamin E succinate-based amphiphilic polymers and their transcellular transport mechanism and intracellular trafficking routes. Drug Deliv 2018;25:210-25.
126. Bathori G, Cervenak L, Karadi I. Caveolae-an alternative endocytotic pathway for targeted drug delivery. Crit Rev Ther Drug Carrier Syst 2004;21:67-95.
127. Wang J, Byrne JD, Napier ME, DeSimone JM. More effective nanomedicines through particle design. Small 2011;7:1919-31.
128. Chen D, Wang J, Wang Y, Zhang F, Dong X, Jiang L, et al. Promoting inter-/intra-cellular process of nanomedicine through its physicochemical properties optimization. Curr Drug Metabol 2018;19:75-82.
129. Zhang Z, Qu Q, Li J, Zhou S. The effect of the hydrophilic/hydrophobic ratio of polymeric micelles on their endocytosis pathways into cells. Macromol Biosci 2013;13:789-98.
130. Li Y, Yue T, Yang K, Zhang X. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. Biomaterials 2012;33:4965-73.
131. Shen Z, Ye H, Yi X, Li Y. Membrane wrapping efficiency of elastic nanoparticles during endocytosis:size and shape matter. ACS Nano 2018;13:215-28.
132. Kozlov MM, McMahon HT, Chernomordik LV. Protein-driven membrane stresses in fusion and fission. Trends Biochem Sci 2010; 35:699-706.
133. Chen L, Xiao S, Zhu H, Wang L, Liang H. Shape-dependent internalization kinetics of nanoparticles by membranes. Soft Matter 2016; 12:2632-41.
134. Vácha R, Martinez-Veracoechea FJ, Frenkel D. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett 2011;11:5391-5.
135. Morton SW, Herlihy KP, Shopsowitz KE, Deng ZJ, Chu KS, Bowerman CJ, et al. Scalable manufacture of built-to-order nanomedicine:spray-assisted layer-by-layer functionalization of print nanoparticles. Adv Mater Technol 2013;25:4707-13.
136. Yi X, Gao H. Kinetics of receptor-mediated endocytosis of elastic nanoparticles. Nanoscale 2017;9:454-63.
137. Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines:implication for rational design. Asian J Pharm Sci 2013;8:1-10.
138. Haniu H, Saito N, Matsuda Y, Tsukahara T, Maruyama K, Usui Y, et al. Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B cells and subsequent biological response. Toxicol Vitro 2013;27:1679-85.
139. Delva E, Jennings JM, Calkins CC, Kottke MD, Faundez V, Kowalczyk AP. Pemphigus vulgaris IgG-induced desmoglein-3 endocytosis and desmosomal disassembly are mediated by a clathrin-and dynamin-independent mechanism. J Biol Chem 2008;283:18303-13.
140. Heuser JE, Anderson R. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. Int J Cell Biol 1989;108:389-400.
141. Carpentier JL, Sawano F, Geiger D, Gorden P, Perrelet A, Orci L. Potassium depletion and hypertonic medium reduce "non-coated" and clathrin-coated pit formation, as well as endocytosis through these two gates. J Cell Physiol 1989;138:519-26.
142. Hansen SH, Sandvig K, Van Deurs B. Clathrin and HA2 adaptors:effects of potassium depletion, hypertonic medium, and cytosol acidification. Int J Cell Biol 1993;121:61-72.
143. McAbee DD, Oka JA, Weigel PH. Loss of surface galactosyl receptor activity on isolated rat hepatocytes induced by monensin or chloroquine requires receptor internalization via a clathrin coated pit pathway. Biochem Biophys Res Commun 1989;161:261-6.
144. Van Jaarsveld PP, Lippoldt RE, Nandi PK, Edelhoch H. Effects of several antimalarials and phenothiazine compounds on the formation of coat structure from clathrin. Biochem Pharmacol 1982;31:793-8.
145. Lisanti Mp, Schook W, Moskowitz N, Beckenstein K, Bloom Ws, Ores C, et al. Brain clathrin:studies of its ultrastructural assemblies. Eur J Biochem 1982;121:617-22.
146. Hertel C, Coulter SJ, Perkins JP. A comparison of catecholamineinduced internalization of beta-adrenergic receptors and receptormediated endocytosis of epidermal growth factor in human astrocytoma cells. Inhibition by phenylarsine oxide. J Biol Chem 1985;260:12547-53.
147. Rikihisa Y, Zhang Y, Park J. Inhibition of infection of macrophages with Ehrlichia risticii by cytochalasins, monodansylcadaverine, and taxol. Infect Immun 1994;62:5126-32.
148. Sargiacomo M, Sudol M, Tang Z, Lisanti MP. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 1993; 122:789-807.
149. Schnitzer JE, Oh P, Pinney E, Allard J. Filipin-sensitive caveolaemediated transport in endothelium:reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 1994;127:1217-32.
150. Hooper NM. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae. Mol Membr Biol 1999;16:145-56.
151. Dowrick P, Kenworthy P, McCann B, Warn R. Circular ruffle formation and closure lead to macropinocytosis in hepatocyte growth factor/scatter factor-treated cells. Eur J Cell Biol 1993;61:44-53.
152. Francis CL, Ryan TA, Jones BD, Smith SJ, Falkow S. Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 1993;364:639-42.
153. Smith CM, Haucke V, McCluskey A, Robinson PJ, Chircop M. Inhibition of clathrin by pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells. Mol Cancer 2013;12:4.
154. Goldenthal KL, Pastan I, Willingham MC. Initial steps in receptormediated endocytosis:the influence of temperature on the shape and distribution of plasma membrane clathrin-coated pits in cultured mammalian cells. Exp Cell Res 1984;152:558-64.
155. Araki N, Johnson MT, Swanson JA. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. Int J Cell Biol 1996;135:1249-60.
156. Gschwendt M, Muller H, Kielbassa K, Zang R, Kittstein W, Rincke G, et al. Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun 1994;199:93-8.
157. Rodal SK, Skretting G, Garred Ø, Vilhardt F, Van Deurs B, Sandvig K. Extraction of cholesterol with methyl-β-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 1999;10:961-74.
158. Orci L, Halban P, Amherdt M, Ravazzola M, Vassalli JD, Perrelet A. A clathrin-coated, Golgi-related compartment of the insulin secreting cell accumulates proinsulin in the presence of monensin. Cell 1984; 39:39-47.
159. Cao J, Xie X, Lu A, He B, Chen Y, Gu Z, et al. Cellular internalization of doxorubicin loaded star-shaped micelles with hydrophilic zwitterionic sulfobetaine segments. Biomaterials 2014;35:4517-24.
160. Zheng C, Guo Q, Wu Z, Sun L, Zhang Z, Li C, et al. Amphiphilic glycopolymer nanoparticles as vehicles for nasal delivery of peptides and proteins. Eur J Pharmaceut Sci 2013;49:474-82.
161. Jiang X, Xin H, Ren Q, Gu J, Zhu L, Du F, et al. Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials 2014;35:518-29.
162. Yang G, Wang J, Li D, Zhou S. Polyanhydride micelles with diverse morphologies for shape-regulated cellular internalization and blood circulation. Regen Biomater 2017;4:149-57.
163. Zhang W, Sun J, Liu Y, Tao M, Ai X, Su X, et al. PEG-stabilized bilayer nanodisks as carriers for doxorubicin delivery. Mol Pharm 2014;11:3279-90.
164. Xia H, Gao X, Gu G, Liu Z, Hu Q, Tu Y, et al. Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery. Int J Pharm 2012;436:840-50.
165. Zhou J, Chau Y. Different oligoarginine modifications alter endocytic pathways and subcellular trafficking of polymeric nanoparticles. Biomater Sci 2016;4:1462-72.
166. Starigazdová J, Nešporová K, Čepa M, Šínová R, Šmejkalová D, Huerta-Angeles G, et al. In vitro investigation of hyaluronan-based polymeric micelles for drug delivery into the skin:the internalization pathway. Eur J Pharmaceut Sci 2020;143:105168.
Similar articles: