Reviews
Cláudia Pina Costa, João Nuno Moreira, José Manuel Sousa Lobo, Ana Catarina Silva. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies[J]. Acta Pharmaceutica Sinica B, 2021, 11(4): 925-940

Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies
Cláudia Pina Costaa, João Nuno Moreirab,c, José Manuel Sousa Loboa, Ana Catarina Silvaa,d
a UCIBIO/REQUIMTE, Medtech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal;
b CNC-Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology(CIBB), University of Coimbra, Faculty of Medicine(Pólo I), Coimbra 3004-504, Portugal;
c UC-University of Coimbra, CIBB, Faculty of Pharmacy, Pólo Das Ciências da Saúde, Coimbra 3000-548, Portugal;
d FP-ENAS(UFP Energy, Environment and Health Research Unit), CEBIMED(Biomedical Research Centre), Faculty of Health Sciences, University Fernando Pessoa, Porto 4249-004, Portugal
Abstract:
The management of the central nervous system (CNS) disorders is challenging, due to the need of drugs to cross the blood-brain barrier (BBB) and reach the brain. Among the various strategies that have been studied to circumvent this challenge, the use of the intranasal route to transport drugs from the nose directly to the brain has been showing promising results. In addition, the encapsulation of the drugs in lipid-based nanocarriers, such as solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) or nanoemulsions (NEs), can improve nose-to-brain transport by increasing the bioavailability and site-specific delivery. This review provides the state-of-the-art of in vivo studies with lipid-based nanocarriers (SLNs, NLCs and NEs) for nose-to-brain delivery. Based on the literature available from the past two years, we present an insight into the different mechanisms that drugs can follow to reach the brain after intranasal administration. The results of pharmacokinetic and pharmacodynamics studies are reported and a critical analysis of the differences between the anatomy of the nasal cavity of the different animal species used in in vivo studies is carried out. Although the exact mechanism of drug transport from the nose to the brain is not fully understood and its effectiveness in humans is unclear, it appears that the intranasal route together with the use of NLCs, SLNs or NEs is advantageous for targeting drugs to the brain. These systems have been shown to be more effective for nose-to-brain delivery than other routes or formulations with non-encapsulated drugs, so they are expected to be approved by regulatory authorities in the coming years.
Key words:    Nose-to-brain delivery    Intranasal administration    Nanostructured lipid carriers    NLC    Solid lipid nanoparticles    SLN    Nanoemulsions    In vivo studies    Pharmacokinetic    Pharmacodynamics   
Received: 2020-10-08     Revised: 2020-12-01
DOI: 10.1016/j.apsb.2021.02.012
Funds: This work was supported by Fundação para a Ciência e a Tecnologia (FCT) (SFRH/136177/2018, Portugal), by the Applied Molecular Biosciences Unit-UCIBIO which is financed by national funds from FCT (UIDP/04378/2020 and UIDB/04378/2020).
Corresponding author: Ana Catarina Silva, ana.silva@ff.up.pt, acsilva@ufp.edu.pt     Email:ana.silva@ff.up.pt, acsilva@ufp.edu.pt
Author description:
Service
PDF(KB) Free
Print
0
Authors
Cláudia Pina Costa
João Nuno Moreira
José Manuel Sousa Lobo
Ana Catarina Silva

References:
1. Alexander A, Agrawal M, Bhupal Chougule M, Saraf S, Saraf S. Chapter 9-nose-to-brain drug delivery:an alternative approach for effective brain drug targeting. In:Shegokar R, editor. Nanopharmaceuticals. Elsevier; 2020. p. 175-200.
2. Pottoo FH, Sharma S, Javed MN, Barkat MA, Harshita, Alam MS, et al. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab Rev 2020;52:185-204.
3. Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 2009;1788:842-57.
4. Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008;127:97-109.
5. Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release 2017;268:364-89.
6. Costa C, Moreira JN, Amaral MH, Sousa Lobo JM, Silva AC. Noseto-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J Control Release 2019;295:187-200.
7. Islam SU, Shehzad A, Ahmed MB, Lee YS. Intranasal delivery of nanoformulations:a potential way of treatment for neurological disorders. Molecules 2020;25:1929.
8. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery:overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235:34-47.
9. Kulkarni AD, Patel HM, Surana SJ, Belgamwar VS, Pardeshi CV. Brain-blood ratio:implications in brain drug delivery. Expet Opin Drug Deliv 2016;13:85-92.
10. Sabir F, Ismail R, Csoka I. Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems:status quo and outlook. Drug Discov Today 2020;25:185-94.
11. Alavian F, Shams N. Oral and intra-nasal administration of nanoparticles in the cerebral ischemia treatment in animal experiments:considering its advantages and disadvantages. Curr Clin Pharmacol 2020;15:20-9.
12. Ali J, Ali M, Baboota S, Sahani JK, Ramassamy C, Dao L, et al. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr Pharmaceut Des 2010;16:1644-53.
13. Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 2016;6:268-86.
14. Pires PC, Santos AO. Nanosystems in nose-to-brain drug delivery:a review of non-clinical brain targeting studies. J Control Release 2018; 270:89-100.
15. Selvaraj K, Gowthamarajan K, Karri VVSR. Nose to brain transport pathways an overview:potential of nanostructured lipid carriers in nose to brain targeting. Artif Cells Nanomed Biotechnol 2018;46:2088-95.
16. Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, et al. Nose-to-brain drug delivery:an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 2018;281:139-77.
17. Wang Z, Xiong G, Tsang WC, Schätzlein AG, Uchegbu IF. Nose-tobrain delivery. J Pharmacol Exp Therapeut 2019;370:593-601.
18. Djupesland PG, Skretting A. Nasal deposition and clearance in man:comparison of a bidirectional powder device and a traditional liquid spray pump. J Aerosol Med Pulm Drug Deliv 2012;25:280-9.
19. Warnken ZN, Smyth HDC, Watts AB, Weitman S, Kuhn JG, Williams RO. Formulation and device design to increase nose to brain drug delivery. J Drug Deliv Sci Technol 2016;35:213-22.
20. Shahaf D, Hadash J, Inventors; SIPNOSE Ltd., assignee. Nasal delivery device. United States patent US9227031B2. 2016 Jan 5.
21. Gänger S, Schindowski K. Tailoring formulations for intranasal noseto-brain delivery:a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018;10:116.
22. Djupesland PG, Skretting A, Winderen M, Holand T. Breath actuated device improves delivery to target sites beyond the nasal valve. Laryngoscope 2006;116:466-72.
23. Djupesland PG, Messina JC, Mahmoud RA. The nasal approach to delivering treatment for brain diseases:an anatomic, physiologic, and delivery technology overview. Ther Deliv 2014;5:709-33.
24. Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 2009;379:146-57.
25. Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 2018;143:155-70.
26. Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci 2018;195:44-52.
27. Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier:an excellent platform for brain targeting. Expet Opin Drug Deliv 2013; 10:957-72.
28. Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm 2018;128:337-62.
29. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharmaceut Sci 2000;11:1-18.
30. Youssef NAHA, Kassem AA, Farid RM, Ismail FA, El-Massik MAE, Boraie NA. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting:preparation, characterization and in vivo evaluation. Int J Pharm 2018;548:609-24.
31. Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative analysis of drug delivery to the brain via nasal route. J Control Release 2014; 189:133-40.
32. Dhuria SV, Hanson LR, Frey WH. Intranasal delivery to the central nervous system:mechanisms and experimental considerations. J Pharmaceut Sci 2010;99:1654-73.
33. Ugwoke MI, Verbeke N, Kinget R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J Pharm Pharmacol 2001;53:3-21.
34. Graff CL, Pollack GM. Nasal drug administration:potential for targeted central nervous system delivery. J Pharmaceut Sci 2005;94:1187-95.
35. Thorne RG, Pronk GJ, Padmanabhan V, Frey 2nd WH. Delivery of insulin-like growth factor-i to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004;127:481-96.
36. Johnson NJ, Hanson LR, Frey WH. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm 2010;7:884-93.
37. Cunha S, Amaral MH, Lobo JMS, Silva AC. Lipid nanoparticles for nasal/intranasal drug delivery. Crit Rev Ther Drug Carrier Syst 2017; 34:257-82.
38. Mittal D, Ali A, Md S, Baboota S, Sahni JK, Ali J. Insights into direct nose to brain delivery:current status and future perspective. Drug Deliv 2014;21:75-86.
39. Ahmad E, Feng Y, Qi J, Fan W, Ma Y, He H, et al. Evidence of noseto-brain delivery of nanoemulsions:cargoes but not vehicles. Nanoscale 2017;9:1174-83.
40. Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017;264:306-32.
41. Silva AC, Amaral MH, Lobo JMS, Almeida H. Editorial:applications of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC):state of the art. Curr Pharmaceut Des 2017;23:6551-2. Available from:https://doi.org/10.2174/1381612824666171214102607.
42. Garcês A, Amaral MH, Sousa Lobo JM, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use:a review. Eur J Pharmaceut Sci 2018;112:159-67.
43. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for sitespecific drug delivery. Biomed Pharmacother 2018;103:598-613.
44. Silva AC, González-Mira E, Lobo JMS, Amaral MH. Current progresses on nanodelivery systems for the treatment of neuropsychiatric diseases:Alzheimer's and schizophrenia. Curr Pharmaceut Des 2013; 19:7185-95.
45. Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems:applications, advantages and disadvantages. Res Pharm Sci 2018;13:288-303.
46. Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs):development, characterizations and comparative evaluations of clotrimazole-loaded slns and nlcs?. Eur J Pharmaceut Sci 2012;47:139-51.
47. Karami Z, Saghatchi Zanjani MR, Hamidi M. Nanoemulsions in CNS drug delivery:recent developments, impacts and challenges. Drug Discov Today 2019;24:1104-15.
48. Battaglia L, Gallarate M. Lipid nanoparticles:state of the art, new preparation methods and challenges in drug delivery. Expet Opin Drug Deliv 2012;9:497-508.
49. Shirodkar RK, Kumar L, Mutalik S, Lewis S. Solid lipid nanoparticles and nanostructured lipid carriers:emerging lipid based drug delivery systems. Pharm Chem J 2019;53:440-53.
50. Ragelle H, Danhier F, Préat V, Langer R, Anderson DG. Nanoparticlebased drug delivery systems:a commercial and regulatory outlook as the field matures. Expet Opin Drug Deliv 2017;14:851-64.
51. Cunha S, Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Using the quality by design (qbd) approach to optimize formulations of lipid nanoparticles and nanoemulsions:a review. Nanomedicine 2020;28:102206.
52. Cunha S, Costa CP, Loureiro JA, Alves J, Peixoto AF, Forbes B, et al. Double optimization of rivastigmine-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery using the quality by design (QbD) approach:formulation variables and instrumental parameters. Pharmaceutics 2020;12.
53. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018;10:57.
54. Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers:a review emphasizing on particle structure and drug release. Eur J Pharmaceut Sci 2018;133:285-308.
55. Blasi P, Giovagnoli S, Schoubben A, Puglia C, Bonina F, Rossi C, et al. Lipid nanoparticles for brain targeting I. Formulation optimization. Int J Pharm 2011;419:287-95.
56. Lu Y, Qi J, Wu W. Chapter 20-lipid nanoparticles:In vitro and in vivo approaches in drug delivery and targeting. In:Grumezescu AM, editor. Drug targeting and stimuli sensitive drug delivery systems. William Andrew Publishing; 2018. p. 749-83.
57. Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics:a review. Pharmaceutics 2020;12:288.
58. Barrios AW, Sanchez Quinteiro P, Salazar I. The nasal cavity of the sheep and its olfactory sensory epithelium. Microsc Res Tech 2014;77:1052-9.
59. Johnson-Delaney CA, Orosz SE. Rabbit respiratory system:clinical anatomy, physiology and disease. Vet Clin:Exot Anim Pract 2011;14:257-66.
60. Harkema JR, Carey SA, Wagner JG, Dintzis SM, Liggitt D. 6-Nose, sinus, pharynx, and larynx. In:Treuting PM, Dintzis SM, editors. Comparative anatomy and histology. San Diego:Academic Press; 2012. p. 71-94.
61. Shobo A, Pamreddy A, Kruger HG, Makatini MM, Naicker T, Govender T, et al. Enhanced brain penetration of pretomanid by intranasal administration of an oil-in-water nanoemulsion. Nanomedicine 2018;13:997-1008.
62. Pardeshi CV, Belgamwar VS. Improved brain pharmacokinetics following intranasal administration of N,N,N-trimethyl chitosan tailored mucoadhesive NLCS. Mater Technol 2020;35:249-66.
63. Jojo GM, Kuppusamy G, De A, Karri V. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer's disease using box-behnken design. Drug Dev Ind Pharm 2019;45:1061-72.
64. Elbardisy B, Galal S, Abdelmonsif DA, Boraie N. Intranasal tadalafil nanoemulsions:formulation, characterization and pharmacodynamic evaluation. Pharmaceut Dev Technol 2019;24:1083-94.
65. Chamanza R, Wright JA. A review of the comparative anatomy, histology, physiology and pathology of the nasal cavity of rats, mice, dogs and non-human primates. Relevance to inhalation toxicology and human health risk assessment. J Comp Pathol 2015;153:287-314.
66. Ruigrok MJ, de Lange EC. Emerging insights for translational pharmacokinetic and pharmacokinetic-pharmacodynamic studies:towards prediction of nose-to-brain transport in humans. AAPS J 2015;17:493-505.
67. Illum L. Nasal drug delivery-possibilities, problems and solutions. J Control Release 2003;87:187-98.
68. Wright B. Chapter 2-clinical trial phases. In:Shamley D, Wright B, editors. A comprehensive and practical guide to clinical trials. Academic Press; 2017. p. 11-5.
69. Turfus SC, Delgoda R, Picking D, Gurley BJ. Chapter 25-pharmacokinetics. In:Badal S, Delgoda R, editors. Pharmacognosy. Boston:Academic Press; 2017. p. 495-512.
70. Lea-Henry TN, Carland JE, Stocker SL, Sevastos J, Roberts DM. Clinical pharmacokinetics in kidney disease:fundamental principles. Clin J Am Soc Nephrol 2018;13:1085-95.
71. Glassman PM, Muzykantov VR. Pharmacokinetic and pharmacodynamic properties of drug delivery systems. J Pharmacol Exp Therapeut 2019;370:570-80.
72. Meibohm B. The role of Pharmacokinetics and pharmacodynamics in the development of biotech drugs. In:Meibohm B, editor. Drug development. Wiley-VCH Verlag GmbH; 2006.
73. Agu R. UM. In situ and ex vivo nasal models for preclinical drug development studies. In:Ehrhardt CKK, editor. Drug absorption studies. Biotechnology:pharmaceutical aspects, vol. III. Boston, MA:Springer; 2008.
74. Ahmad N, Ahmad R, Alam MA, Ahmad FJ, Amir M. Impact of ultrasonication techniques on the preparation of novel amiloridenanoemulsion used for intranasal delivery in the treatment of epilepsy. Artif Cells Nanomed Biotechnol 2018;46:S192-207.
75. Ahmad N, Ahmad R, Naqvi AA, Alam MA, Ashafaq M, Abdur Rub R, et al. Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif Cells Nanomed Biotechnol 2018;46:717-29.
76. Yasir M, Sara UVS, Chauhan I, Gaur PK, Singh AP, Puri D, et al. Solid lipid nanoparticles for nose to brain delivery of donepezil:formulation, optimization by boxebehnken design, in vitro and in vivo evaluation. Artif Cells Nanomed Biotechnol 2018;46:1838-51.
77. Singh SK, Hidau MK, Gautam S, Gupta K, Singh KP, Singh SK, et al. Glycol chitosan functionalized asenapine nanostructured lipid carriers for targeted brain delivery:pharmacokinetic and teratogenic assessment. Int J Biol Macromol 2018;108:1092-100.
78. Muntimadugu E, Dhommati R, Jain A, Challa VG, Shaheen M, Khan W. Intranasal delivery of nanoparticle encapsulated tarenflurbil:a potential brain targeting strategy for Alzheimer's disease. Eur J Pharmaceut Sci 2016;92:224-34.
79. Rajput Apb S. Fabrication of an ion-sensitive in situ gel loaded with nanostructured lipid carrier for nose to brain delivery of donepezil. Asian J Pharm 2018;12.
80. Rajput AP, Butani SB. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route:formulation, optimization and in vivo characterization. J Drug Deliv Sci Technol 2019;51:214-23.
81. Jazuli I, Annu Nabi B, Moolakkadath T, Alam T, Baboota S, Ali J. Optimization of nanostructured lipid carriers of lurasidone hydrochloride using Box-Behnken design for brain targeting:In vitro and in vivo studies. J Pharmaceut Sci 2019;108:3082-90.
82. Gadhave DG, Tagalpallewar AA, Kokare CR. Agranulocytosis-protective olanzapine-loaded nanostructured lipid carriers engineered for cns delivery:optimization and hematological toxicity studies. AAPS PharmSciTech 2019;20:22.
83. Abbas H, Refai H, El Sayed N. Superparamagnetic iron oxide-loaded lipid nanocarriers incorporated in thermosensitive insitu gel for magnetic brain targeting of clonazepam. J Pharmaceut Sci 2018;107:2119-27.
84. Hammad RW, Sanad RAB, Abdelmalk NS, Aziz RL, Torad FA. Intranasal surface-modified mosapride citrate-loaded nanostructured lipid carriers (MOS-SMNLCs) for treatment of reflux diseases:in vitro optimization, pharmacodynamics, and pharmacokinetic studies. AAPS PharmSciTech 2018;19:3791-808.
85. Du W, Li H, Tian B, Sai S, Gao Y, Lan T, et al. Development of noseto-brain delivery of ketoconazole by nanostructured lipid carriers against cryptococcal meningoencephalitis in mice. Colloids Surf, B 2019;183:110446.
86. Gadhave DG, Kokare CR. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis:optimization and in vivo studies. Drug Dev Ind Pharm 2019;45:839-51.
87. Gaba B, Khan T, Haider MF, Alam T, Baboota S, Parvez S, et al. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-ohda Parkinson's disease model. BioMed Res Int 2019;2019:2382563.
88. Kumar S, Dang S, Nigam K, Ali J, Baboota S. Selegiline nanoformulation in attenuation of oxidative stress and upregulation of dopamine in the brain for the treatment of Parkinson's disease. Rejuvenation Res 2018;21:464-76.
89. Arora A, Kumar S, Ali J, Baboota S. Intranasal delivery of tetrabenazine nanoemulsion via olfactory region for better treatment of hyperkinetic movement associated with huntington's disease:pharmacokinetic and brain delivery study. Chem Phys Lipids 2020;230:104917.
90. Patel RJ, Parikh RH. Intranasal delivery of topiramate nanoemulsion:pharmacodynamic, pharmacokinetic and brain uptake studies. Int J Pharm 2020;585:119486.
91. Jiang Y, Liu C, Zhai W, Zhuang N, Han T, Ding Z. The optimization design of lactoferrin loaded hupa nanoemulsion for targeted drug transport via intranasal route. Int J Nanomed 2019; 14:9217-34.
92. Pietrowsky R, Strüben C, Mölle M, Fehm HL, Born J. Brain potential changes after intranasal vs. Intravenous administration of vasopressin:evidence for a direct nose-brain pathway for peptide effects in humans. Biol Psychiatr 1996;39:332-40.
93. Derad I, Willeke K, Pietrowsky R, Born J, Fehm HL. Intranasal angiotensin ii directly influences central nervous regulation of blood pressure. Am J Hypertens 1998;11:971-7.
94. Medicine USNLo. Intranasal ongoing studies. Available from:https://clinicaltrials.gov/ct2/results?term=Intranasal&Search=Apply&recrs=b&recrs=a&recrs=f&recrs=d&age_v=&gndr=&type=&rslt=.[Accessed 22 July 2020].
95. Medicine USNLo. Intranasal ongoing studies (without a specific phase). Available from:https://clinicaltrials.gov/ct2/results?term=Intranasal&recrs=b&recrs=a&recrs=f&recrs=d&age_v=&gndr=&type=&rslt=&phase=5&Search=Apply.[Accessed 22 July 2020].
96. Deshpande A, Mohamed M, Daftardar SB, Patel M, Boddu SHS, Nesamony J. Chapter 12-Solid lipid nanoparticles in drug delivery:opportunities and challenges. In:Mitra AK, Cholkar K, Mandal A, editors. Emerging nanotechnologies for diagnostics, drug delivery and medical devices. Boston:Elsevier; 2017. p. 291-330.
97. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 2009; 366:170-84.
98. Battaglia L, Ugazio E. Lipid nano- and microparticles:an overview of patent-related research. J Nanomater 2019;2019:2834941.
99. Gasco MR. Lipid nanoparticles:perspectives and challenges. Adv Drug Deliv Rev 2007;59:377-8.
Similar articles:
1.Zhoupeng Zhang, Wei Tang.Drug metabolism in drug discovery and development[J]. Acta Pharmaceutica Sinica B, 2018,8(5): 721-732
2.Gui Chen, Baohua Hao, Dahong Ju, Meijie Liu, Hongyan Zhao, Zhongping Du, Jizi Xia.Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis[J]. Acta Pharmaceutica Sinica B, 2015,5(6): 569-576
3.Mohd Yasir, Udai Vir Singh Sara.Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation[J]. Acta Pharmaceutica Sinica B, 2014,4(6): 454-463
Similar articles: