Qingqing Xiao, Xiaotong Li, Yi Li, Zhenfeng Wu, Chenjie Xu, Zhongjian Chen, Wei He. Biological drug and drug delivery-mediated immunotherapy[J]. Acta Pharmaceutica Sinica B, 2021, 11(4): 941-960

Biological drug and drug delivery-mediated immunotherapy
Qingqing Xiaoa, Xiaotong Lia, Yi Lia, Zhenfeng Wub, Chenjie Xuc, Zhongjian Chend, Wei Hed,a
a School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
b Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China;
c Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China;
d Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion by enzymes in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.
Key words:    Inflammatory diseases    Cancer immunotherapy    Atherosclerosis    Pulmonary artery hypertension    Biologics    Adoptive cell transfer    Immune targets    Drug delivery   
Received: 2020-09-25     Revised: 2020-11-03
DOI: 10.1016/j.apsb.2020.12.018
Funds: This study was supported by the National Natural Science Foundation of China (Nos. 81872823 and 82073782), the Double FirstClass (CPU2018PZQ13, China) of the China Pharmaceutical University, the Shanghai Science and Technology Committee (No. 19430741500, China), the Key Laboratory of Modern Chinese Medicine Preparation of Ministry of Education of Jiangxi University of Traditional Chinese Medicine (TCM-201905, China), and the Start-up Grant from City University of Hong Kong (No. 9610472, China).
Corresponding author: Wei He,
Author description:
PDF(KB) Free
Qingqing Xiao
Xiaotong Li
Yi Li
Zhenfeng Wu
Chenjie Xu
Zhongjian Chen
Wei He

1. He W, Kapate N, IV CWS, Mitragotri S. Drug delivery to macrophages:a review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv Drug Deliv Rev 2020;165-166:15-40.
2. Garn H, Bahn S, Baune BT, Binder EB, Bisgaard H, Chatila TA, et al. Current concepts in chronic inflammatory diseases:interactions between microbes, cellular metabolism, and inflammation. J Allergy Clin Immunol 2016;138:47-56.
3. Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med 2018;10:eaat7807.
4. Till SJ, Francis JN, Nouri-Aria K, Durham SR. Mechanisms of immunotherapy. J Allergy Clin Immunol 2004;113:1025-34.
5. Tan SZ, Li DP, Zhu X. Cancer immunotherapy:pros, cons and beyond. Biomed Pharmacother 2020;124:109821.
6. Steffens S, Weber C. Immunotherapy for atherosclerosisdnovel concepts. Thromb Haemostasis 2019;119:515-6.
7. Ahmed M, Bae Y-S. Dendritic cell-based immunotherapy for rheumatoid arthritis:from bench to bedside. Immune Netw 2016;16:44-51.
8. Catalan-Serra I, Brenna Ø. Immunotherapy in inflammatory bowel disease:novel and emerging treatments. Hum Vaccines Immunother 2018;14:2597-611.
9. Nicolls MR, Voelkel NF. The roles of immunity in the prevention and evolution of pulmonary arterial hypertension. Am J Respir Crit Care Med 2017;195:1292-9.
10. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017;168:707-23.
11. Law AMK, Lim E, Ormandy CJ, Gallego-Ortega D. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy. Endocr Relat Cancer 2017;24:R123-44.
12. Silva LCR, Ortigosa LCM, Benard G. Anti-TNF-a agents in the treatment of immune-mediated inflammatory diseases:mechanisms of action and pitfalls. Immunotherapy 2010;2:817-33.
13. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-64.
14. Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release syndrome in severe COVID-19:interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents 2020;55:105954.
15. Hara Y, Nagaoka S. Nivolumab (Opdivo). Singapore:Springer Singapore; 2019.
16. Wills S, Hochmuth LK, Bauer KS, Durvalumab Deshmukh R. A newly approved checkpoint inhibitor for the treatment of urothelial carcinoma. Curr Probl Cancer 2019;43:181-94.
17. Subklewe M, von Bergwelt-Baildon M, Humpe A. Chimeric antigen receptor T cells:a race to revolutionize cancer therapy. Transfus Med Hemotherapy 2019;46:15-24.
18. Strohl WR. Current progress in innovative engineered antibodies. Protein cell 2018;9:86-120.
19. Schwartz DM, Bonelli M, Gadina M, O'Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol 2016;12:25-36.
20. Sanjabi S, Oh SA, Li MO. Regulation of the immune response by TGF-b:from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol 2017;9:a022236.
21. Mullard A. 2017 FDA drug approvals. Nat Rev Drug Discov 2018; 17:81-5.
22. Mullard A. 2012 FDA drug approvals. Nat Rev Drug Discov 2013; 12:87-90.
23. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy:mechanism, combinations, and clinical outcome. Front Pharmacol 2017;8:561.
24. Agarwala SS. Practical approaches to immunotherapy in the clinic. Semin Oncol 2015;42:S20-7.
25. Pföhler C, Eichler H, Burgard B, Krecké N, Müller CSL, Vogt T. A case of immune thrombocytopenia as a rare side effect of an immunotherapy with PD1-blocking agents for metastatic melanoma. Transfus Med Hemotherapy 2017;44:426-8.
26. Vial T, Descotes J. Immune-mediated side-effects of cytokines in humans. Toxicology 1995;105:31-57.
27. He W, Xing XY, Wang XL, Wu D, Wu W, Guo JL, et al. Nanocarriermediated cytosolic delivery of biopharmaceuticals. Adv Funct Mater 2020:1910566. n/a.
28. Wu W, Li TL. Unraveling the in vivo fate and cellular pharmacokinetics of drug nanocarriers. Adv Drug Deliv Rev 2019;143:1-2.
29. Zhao ZM, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev 2019;143:3-21.
30. Xiao QQ, Zhu X, Yuan YT, Yin LF, He W. A drug-delivering-drug strategy for combined treatment of metastatic breast cancer. Nanomed-Nanotechnol 2018;14:2678-88.
31. Jin K, Luo ZM, Zhang B, Pang ZQ. Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B 2018;8:23-33.
32. Mao YS, Zou CF, Jiang YJ, Fu DL. Erythrocyte-derived drug delivery systems in cancer therapy. Chin Chem Lett 2021;32:990-8.
33. Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019;143:68-96.
34. Su C, Liu YZ, Li RZ, Wu W, Fawcett JP, Gu JK. Absorption, distribution, metabolism and excretion of the biomaterials used in nanocarrier drug delivery systems. Adv Drug Deliv Rev 2019;143:97-114.
35. Zhu YF, Yu XR, Thamphiwatana SD, Zheng Y, Pang ZQ. Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy. Acta Pharm Sin B 2020;10:2054-74.
36. Lu Y, Li Y, Wu W. Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B 2016;6:106-13.
37. Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 2015;11:1018-30.
38. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer 2019;120:6-15.
39. Quesada JR, Hersh EM, Manning J, Reuben J, Keating M, Schnipper E, et al. Treatment of hairy cell leukemia with recombinant alpha-interferon. Blood 1986;68:493-7.
40. Rosenberg SA. IL-2:the first effective immunotherapy for human cancer. J Immunol 2014;192:5451-8.
41. Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 1987; 316:889-97.
42. Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol 2018;10:a028472.
43. Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 2013;39:38-48.
44. Jahanafrooz Z, Baradaran B, Mosafer J, Hashemzaei M, Rezaei T, Mokhtarzadeh A, et al. Comparison of DNA and mRNA vaccines against cancer. Drug Discov Today 2020;25:552-60.
45. Kimiz-Gebologlu I, Gulce-Iz S, Biray-Avci C. Monoclonal antibodies in cancer immunotherapy. Mol Biol Rep 2018;45:2935-40.
46. Jafari S, Molavi O, Kahroba H, Hejazi MS, Maleki-Dizaji N, Barghi S, et al. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Cell Mol Life Sci 2020;77:3693-710.
47. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992;11:3887-95.
48. Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, et al. A new member of the immunoglobulin superfamily-CTLA-4. Nature 1987;328:267-70.
49. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria J-C, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 2016;52:50-66.
50. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways:similarities, differences, and implications of their inhibition. Am J Clin Oncol 2016;39:98-106.
51. Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses:mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001;19:565-94.
52. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 2018;378:158-68.
53. Iwai Y, Okazaki T, Nishimura H, Kawasaki A, Yagita H, Honjo T. Microanatomical localization of PD-1 in human tonsils. Immunol Lett 2002;83:215-20.
54. Patsoukis N, Duke-Cohan JS, Chaudhri A, Aksoylar H-I, Wang Q, Council A, et al. Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Commun Biol 2020;3:128.
55. Iwai Y, Hamanishi J, Chamoto K, Honjo T. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci 2017;24:26.
56. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005;25:9543-53.
57. Lee HW, Cho KJ, Park JY. Current status and future direction of immunotherapy in hepatocellular carcinoma:what do the data suggest?. Immune Netw 2020;20:e11.
58. Faruki H, Mayhew GM, Serody JS, Hayes DN, Perou CM, LaiGoldman M. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape. J Thorac Oncol 2017;12:943-53.
59. Ö Met, Jensen KM, Chamberlain CA, Donia M, Svane IM. Principles of adoptive T cell therapy in cancer. Semin Immunopathol 2019;41:49-58.
60. June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018;359:1361-5.
61. Andersen R, Borch TH, Draghi A, Gokuldass A, Rana MAH, Pedersen M, et al. T cells isolated from patients with checkpoint inhibitor-resistant melanoma are functional and can mediate tumor regression. Ann Oncol 2018;29:1575-81.
62. Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 2015;21:914-21.
63. Newick K, O'Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med 2017;68:139-52.
64. Zhang J, Wang L. The emerging world of TCR-T cell trials against cancer:a systematic review. Technol Cancer Res Treat 2019;18. 1533033819831068.
65. Barrett DM, Grupp SA, June CH. Chimeric antigen receptor- and TCR-modified T cells enter main street and wall street. J Immunol 2015;195:755-61.
66. Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(-propylene sulfide) nanoparticles. J Control Release 2006;112:26-34.
67. He HS, Lu Y, Qi JP, Zhu QG, Chen ZJ, Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B 2019;9:36-48.
68. Da Silva CG, Rueda F, Löwik CW, Ossendorp F, Cruz LJ. Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials 2016;83:308-20.
69. Caster JM, Callaghan C, Seyedin SN, Henderson K, Sun B, Wang AZ. Optimizing advances in nanoparticle delivery for cancer immunotherapy. Adv Drug Deliv Rev 2019;144:3-15.
70. Mishra P, Nayak B, Dey RK. PEGylation in anti-cancer therapy:an overview. Asian J Pharm Sci 2016;11:337-48.
71. Schmid D, Park CG, Hartl CA, Subedi N, Cartwright AN, Puerto RB, et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat Commun 2017;8:1747.
72. Buabeid MA, Arafa EA, Murtaza G. Emerging prospects for nanoparticle-enabled cancer immunotherapy. J Immunol Res 2020; 2020:9624532.
73. Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, et al. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev 2019;151-152:72-93.
74. Moon JJ, Huang B, Irvine DJ. Engineering nano- and microparticles to tune immunity. Adv Mater 2012;24:3724-46.
75. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019;18:175-96.
76. Man F, Gawne PJ, TMdR R. Nuclear imaging of liposomal drug delivery systems:a critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 2019;143:134-60.
77. Peng JR, Yang Q, Shi K, Xiao Y, Wei XW, Qian ZY. Intratumoral fate of functional nanoparticles in response to microenvironment factor:implications on cancer diagnosis and therapy. Adv Drug Deliv Rev 2019;143:37-67.
78. Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol 2017;12:813-20.
79. Wang C, Sun WJ, Wright G, Wang AZ, Gu Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv Mater 2016;28:8912-20.
80. Jia YP, Ma BY, Wei XW, Qian ZY. The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett 2017;28:691-702.
81. Yin JF, Huang YX, Hameed SM, Zhou RY, Xie LJ, Ying YB. Large scale assembly of nanomaterials:mechanisms and applications. Nanoscale 2020;12:17571-89.
82. Sang W, Zhang Z, Dai YL, Chen XY. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem Soc Rev 2019;48:3771-810.
83. He XS, Gershwin ME, Ansari AA. Checkpoint-based immunotherapy for autoimmune diseases e opportunities and challenges. J Autoimmun 2017;79:1-3.
84. Wraith D. Antigen-specific immunotherapy. Nature 2016;530:422-3.
85. Hilkens CM, Isaacs JD. Tolerogenic dendritic cell therapy for rheumatoid arthritis:where are we now?. Clin Exp Immunol 2013;172:148-57.
86. Weyand CM, Goronzy JJ. Immunometabolism in the development of rheumatoid arthritis. Immunol Rev 2020;294:177-87.
87. Salomon S, Guignant C, Morel P, Flahaut G, Brault C, Gourguechon C, et al. Th17 and CD24hiCD27+ regulatory B lymphocytes are biomarkers of response to biologics in rheumatoid arthritis. Arthritis Res Ther 2017;19:33.
88. Lamas JR, Mucientes A, Lajas C, Fernández-Gutiérrez B, Lópiz Y, Marco F, et al. Check-control of inflammation displayed by bone marrow mesenchymal stem cells in rheumatoid arthritis patients. Immunotherapy 2019;11:1107-16.
89. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J Exp Med 2004;200:277-85.
90. Xu L, Song XL, Su LL, Zheng Y, Li R, Sun J. New therapeutic strategies based on IL-2 to modulate Treg cells for autoimmune diseases. Int Immunopharm 2019;72:322-9.
91. Semerano L, Minichiello E, Bessis N, Boissier M-C. Novel immunotherapeutic avenues for rheumatoid arthritis. Trends Mol Med 2016;22:214-29.
92. Rosser EC, Blair PA, Mauri C. Cellular targets of regulatory B cellmediated suppression. Mol Immunol 2014;62:296-304.
93. Veen Wvd, Stanic B, Wirz OF, Jansen K, Globinska A, Akdis M. Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol 2016;138:654-65.
94. Mielle J, Audo R, Hahne M, Macia L, Combe B, Morel J, et al. IL-10 producing B cells ability to induce regulatory T cells is maintained in rheumatoid arthritis. Front Immunol 2018;9.
95. Daien CI, Gailhac S, Mura T, Audo R, Combe B, Hahne M, et al. Regulatory B10 cells are decreased in patients with rheumatoid arthritis and are inversely correlated with disease activity. Arthritis Rheum 2014;66:2037-46.
96. Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA, et al. CD19+ CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 2013;5. 173ra23-ra23.
97. Mauri C, Gray D, Mushtaq N, Londei M. Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 2003;197:489-501.
98. Pozsgay J, Szekanecz Z, Sármay G. Antigen-specific immunotherapies in rheumatic diseases. Adv Drug Deliv Rev 2017;13:525-37.
99. Zhao X, Long J, Liang F, Liu N, Sun YY, Xi YZ. Vaccination with a novel antigen-specific tolerizing DNA vaccine encoding CCOL2A1 protects rats from experimental rheumatoid arthritis. Hum Gene Ther 2018;30:69-78.
100. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007;7:429-42.
101. Elemam NM, Hannawi S, Maghazachi AA. Role of chemokines and chemokine receptors in rheumatoid arthritis. ImmunoTargets Ther 2020;9:43-56.
102. McInnes IB, Buckley CD, Isaacs JD. Cytokines in rheumatoid arthritis-shaping the immunological landscape. Nat Rev Rheumatol 2016;12:63-8.
103. Davignon J-L, Rauwel B, Degboé Y, Constantin A, Boyer J-F, Kruglov A, et al. Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis:a review. Arthritis Res Ther 2018;20:229.
104. Baseta JG, Stutman O. TNF regulates thymocyte production by apoptosis and proliferation of the triple negative (CD3-CD4-CD8-) subset. J Immunol 2000;165:5621-30.
105. Huang ZC, Yang B, Shi YY, Cai B, Li Y, Feng WH, et al. Anti-TNFa therapy improves Treg and suppresses Teff in patients with rheumatoid arthritis. Cell Immunol 2012;279:25-9.
106. Rao DA, Gurish MF, Marshall JL, Slowikowski K, Fonseka CY, Liu YY, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 2017;542:110-4.
107. Bankó Z, Pozsgay J, Gáti T, Rojkovich B, Ujfalussy I, Sármay G. Regulatory B cells in rheumatoid arthritis:alterations in patients receiving anti-TNF therapy. Clin Immunol 2017;184:63-9.
108. Narazaki M, Tanaka T, Kishimoto T. The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expet Rev Clin Immunol 2017; 13:535-51.
109. Samarpita S, Kim JY, Rasool MK, Kim KS. Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential antirheumatoid arthritis drug. Arthritis Res Ther 2020;22:16.
110. Olsen IC, Lie E, Vasilescu R, Wallenstein G, Strengholt S, Kvien TK. Assessments of the unmet need in the management of patients with rheumatoid arthritis:analyses from the NOR-DMARD registry. Rheumatology 2019;58:481-91.
111. Yamaoka K. Janus kinase inhibitors for rheumatoid arthritis. Curr Opin Chem Biol 2016;32:29-33.
112. Fragoulis GE, McInnes IB, Siebert S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology 2019;58:i43-54.
113. Nakayamada S, Kubo S, Iwata S, Tanaka Y. Chemical JAK inhibitors for the treatment of rheumatoid arthritis. Expet Opin Pharmacother 2016;17:2215-25.
114. Pujol-Autonell I, Mansilla M-J, Rodriguez-Fernandez S, CanoSarabia M, Navarro-Barriuso J, Ampudia R-M, et al. Liposomebased immunotherapy against autoimmune diseases:therapeutic effect on multiple sclerosis. Nanomedicine 2017;12:1231-42.
115. Song P, Yang CX, Thomsen JS, Dagnæs-Hansen F, Jakobsen M, Brüel A, et al. Lipidoid-siRNA nanoparticle-mediated IL-1β gene silencing for systemic arthritis therapy in a mouse model. Mol Ther 2019;27:1424-35.
116. Capini C, Jaturanpinyo M, Chang H-I, Mutalik S, McNally A, Street S, et al. Antigen-specific suppression of inflammatory arthritis using liposomes. J Immunol 2009;182:3556-65.
117. Kishimoto TK, Ferrari JD, LaMothe RA, Kolte PN, Griset AP, O'Neil C, et al. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat Nanotechnol 2016;11:890-9.
118. Khan D, Qindeel M, Ahmed N, Khan AU, Khan S, Au Rehman. Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis. Nanomedicine 2020; 15:603-24.
119. Mohammadi M, Li Y, Abebe DG, Xie YR, Kandil R, Kraus T, et al. Folate receptor targeted three-layered micelles and hydrogels for gene delivery to activated macrophages. J Control Release 2016;244:269-79.
120. Lee H, Lee MY, Bhang SH, Kim BS, Kim YS, Ju JH, et al. Hyaluronateegold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano 2014;8:4790-8.
121. Zou SJ, Wang BL, Wang C, Wang QQ, Zhang LM. Cell membranecoated nanoparticles:research advances. Nanomedicine 2020;15:625-41.
122. He YW, Li RX, Liang JM, Zhu Y, Zhang SY, Zheng ZC, et al. Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis. Nano Res 2018;11:6086-101.
123. Zhang QZ, Dehaini DN, Zhang Y, Zhou JL, Chen XY, Zhang LF, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol 2018;13:1182-90.
124. Gorantla S, Singhvi G, Rapalli VK, Waghule T, Dubey SK, Saha RN. Targeted drug-delivery systems in the treatment of rheumatoid arthritis:recent advancement and clinical status. Ther Deliv 2020;11:269-84.
125. Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A. Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomed Nanotechnol Biol Med 2016;12:1113-26.
126. Lyu YQ, Xiao QQ, Yin LF, Yang L, He W. Potent delivery of an MMP inhibitor to the tumor microenvironment with thermosensitive liposomes for the suppression of metastasis and angiogenesis. Signal Transduct Tar 2019;4:26.
127. Duan WF, Li H. Combination of NF-kB targeted siRNA and methotrexate in a hybrid nanocarrier towards the effective treatment in rheumatoid arthritis. J Nanobiotechnol 2018;16:58.
128. Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 2020;578:527-39.
129. Sun M, He C, Cong Y, Liu Z. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. Mucosal Immunol 2015;8:969-78.
130. Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011;474:298-306.
131. Cader MZ, Kaser A. Recent advances in inflammatory bowel disease:mucosal immune cells in intestinal inflammation. Gut 2013;62:1653-64.
132. Trivedi PJ, Adams DH. Chemokines and chemokine receptors as therapeutic targets in inflammatory bowel disease; pitfalls and promise. J Crohns Colitis 2018;12:S641-52.
133. Raad MA, Chams NH, Sharara AI. New and evolving immunotherapy in inflammatory bowel disease. Inflammatory Intestinal Diseases 2016;1:85-95.
134. Danese S, Vuitton L, Peyrin-Biroulet L. Biologic agents for IBD:practical insights. Nat Rev Gastroenterol Hepatol 2015;12:537-45.
135. Griffiths OR, Landon J, Coxon RE, Morris K, James P, Adams R. Chapter Five-inflammatory bowel disease and targeted oral antiTNFa therapy. Adv Protein Chem Str 2020;119:157-98.
136. Zhang SF, Langer R, Traverso G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today 2017;16:82-96.
137. Lautenschläger C, Schmidt C, Fischer D, Stallmach A. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Deliv Rev 2014;71:58-76.
138. Vass P, Démuth B, Hirsch E, Nagy B, Andersen SK, Vigh T, et al. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J Control Release 2019;296:162-78.
139. Li X, Lu C, Yang YY, Yu CH, Rao YF. Site-specific targeted drug delivery systems for the treatment of inflammatory bowel disease. Biomed Pharmacother 2020;129:110486.
140. Friend DR. New oral delivery systems for treatment of inflammatory bowel disease. Adv Drug Deliv Rev 2005;57:247-65.
141. Zhang YY, Thanou MY, Vllasaliu D. Exploiting disease-induced changes for targeted oral delivery of biologics and nanomedicines in inflammatory bowel disease. Eur J Pharm Biopharm 2020;155:128-38.
142. Courthion H, Mugnier T, Rousseaux C, Möller M, Gurny R, Gabriel D. Self-assembling polymeric nanocarriers to target inflammatory lesions in ulcerative colitis. J Control Release 2018;275:32-9.
143. Xiao B, Chen QB, Zhang Z, Wang LX, Kang YJ, Denning T, et al. TNFa gene silencing mediated by orally targeted nanoparticles combined with interleukin-22 for synergistic combination therapy of ulcerative colitis. J Control Release 2018;287:235-46.
144. Nguyen T-HT, Trinh N-T, Tran HN, Tran HT, Le PQ, Ngo D-N, et al. Improving silymarin oral bioavailability using silica-installed redox nanoparticle to suppress inflammatory bowel disease. J Control Release 2021;331:515-24.
145. Hua SS, Marks E, Schneider JJ, Keely S. Advances in oral nanodelivery systems for colon targeted drug delivery in inflammatory bowel disease:selective targeting to diseased versus healthy tissue. Nanomed Nanotechnol Biol Med 2015;11:1117-32.
146. Laroui H, Dalmasso G, Nguyen HTT, Yan YT, Sitaraman SV, Merlin D. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology 2010;138. 843-U77.
147. Knipe JM, Strong LE, Peppas NA. Enzyme- and pH-responsive microencapsulated manogels for oral delivery of siRNA to induce TNF-alpha knockdown in the intestine. Biomacromolecules 2016;17:788-97.
148. Xiao B, Xu ZG, Viennois E, Zhang YC, Zhang Z, Zhang MZ, et al. Orally targeted delivery of tripeptide KPV via hyaluronic acidfunctionalized nanoparticles efficiently alleviates ulcerative colitis. Mol Ther 2017;25:1628-40.
149. Zhang SF, Ermann J, Succi MD, Zhou A, Hamilton MJ, Cao B, et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci Transl Med 2015;7. 300ra128.
150. Vong LB, Mo J, Abrahamsson B, Nagasaki Y. Specific accumulation of orally administered redox nanotherapeutics in the inflamed colon reducing inflammation with dose-response efficacy. J Control Release 2015;210:19-25.
Similar articles:
1.Yuefei Zhu, Xiangrong Yu, Soracha D. Thamphiwatana, Ying Zheng, Zhiqing Pang.Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy[J]. Acta Pharmaceutica Sinica B, 2020,10(11): 2054-2074
Similar articles: