Original articles
Baode Shen, Chengying Shen, Weifeng Zhu, Hailong Yuan. The contribution of absorption of integral nanocrystals to enhancement of oral bioavailability of quercetin[J]. Acta Pharmaceutica Sinica B, 2021, 11(4): 978-988

The contribution of absorption of integral nanocrystals to enhancement of oral bioavailability of quercetin
Baode Shena,b, Chengying Shena, Weifeng Zhub, Hailong Yuana
a Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China;
b Key Lab of Modern Preparation of Traditional Chinese Medicine(TCM), Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China
In this study, self-discriminating hybrid nanocrystals was utilized to explore the biological fate of quercetin hybrid nanocrystals (QT-HNCs) with diameter around 280 nm (QT-HNCs-280) and 550 nm (QT-HNCs-550) following oral and intravenous administration and the contribution of integral nanocrystals to oral bioavailability enhancement of QT was estimated by comparing the absolute exposure of integral QT-HNCs and total QT in the liver. Results showed that QT-HNCs could reside in vivo as intact nanocrystals for as long as 48 h following oral and intravenous administration. A higher accumulation of integral QT-HNCs in liver and lung was observed for both oral and intravenous administration of QT-HNCs. The particle size affects the absorption and biodistribution of integral QT-HNCs and total QT. As compared to QT-HNCs-550, QT-HNCs-280 with smaller particle size is more easily absorbed, but dissolves faster in vivo, leading to higher distribution of QT (146.90 vs. 117.91 h·μg/mL) but lower accumulation of integral nanocrystals (6.8 2e10 vs. 15.27e10 h·[p/s]/[μW/cm2]) in liver following oral administration. Due to its slower dissolution and enhanced recognition by RES, QT-HNCs-550 with larger diameter shows higher liver distribution for both of QT (1015.80 h·μg/mL) and integral nanocrystals (259.63e10 h·[p/s]/[μW/cm2]) than those of QT-HNCs-280 (673.82 & 77.66e10 h·[p/s]/[μW/cm2]) following intravenous administration. The absolute exposure of integral QT-HNCs in liver following oral administration of QT-HNCs are 8.78% for QT-HNCs-280 and 5.88% for QT-HNCs-550, while the absolute exposure of total QT for QT-HNCs-280 and QT-HNCs-550 are 21.80% and 11.61%, respectively. Owing to imprecise quantification method, a surprisingly high contribution of integral QT-HNCs to oral bioavailability enhancement of QT (40.27% for QT-HNCs-280 and 50.65% for QT-HNCs-550) was obtained. These results revealed significant difference in absorption and biodistrbution between integral nanocrystals and overall drugs following oral and intravenous administration of QT-HNCs, and provided a meaningful reference for the contribution of integral nanocrystals to overall bioavailability enhancement.
Key words:    Nanocrystals    Biological fate    Quercetin    Pharmacokinetics    Biodistribution    Oral bioavailability    Contribution    Drug delivery   
Received: 2020-11-16     Revised: 2020-12-27
DOI: 10.1016/j.apsb.2021.02.015
Funds: This work was supported by the National Natural Science Foundation of China (Nos. 81803741 and 81873092).
Corresponding author: Weifeng Zhu, zwf0322@126.com;Hailong Yuan, yhlpharm@126.com     Email:zwf0322@126.com;yhlpharm@126.com
Author description:
PDF(KB) Free
Baode Shen
Chengying Shen
Weifeng Zhu
Hailong Yuan

1. Ren XT, Qi JP, Wu W, Yin ZN, Li TL, Lu Y. Development of carrierfree nanocrystals of poorly water-soluble drugs by exploring metastable zone of nucleation. Acta Pharm Sin B 2019;9:118-27.
2. Mohammad IS, Hu HY, Yin LF, He W. Drug nanocrystals:fabrication methods and promising therapeutic applications. Int J Pharm 2019; 562:187-202.
3. Gujar K, Wairkar S. Nanocrystal technology for improving therapeutic efficacy of flavonoids. Phytomedicine 2020;71:153240.
4. Lai F, Schlich M, Pireddu R, Fadda AM, Sinico C. Nanocrystals as effective delivery systems of poorly water-soluble natural molecules. Curr Med Chem 2019;26:4657-80.
5. Shen BD, Wu N, Shen CY, Zhang FC, Wu Y, Xu PH, et al. Hyperoside nanocrystals for HBV treatment:process optimization, in vitro and in vivo evaluation. Drug Dev Ind Pharm 2016;42:1772-81.
6. Lu Y, Chen Y, Gemeinhart RA, Wu W, Li T. Developing nanocrystals for cancer treatment. Nanomedicine 2015;10:2537-52.
7. Müller RH, Gohla S, Keck CM. State of the art of nanocrystals-special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 2011;78:1-9.
8. Fontana F, Figueiredo P, Zhang P, Hirvonen JT, Liu DF, Santos HA. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv Drug Deliv Rev 2018;131:3-21.
9. Chen ZJ, Wu W, Lu Y. What is the future for nanocrystal-based drugdelivery systems?. Ther Deliv 2020;11:225-9.
10. Wu W, Lu Y, Qi JP. Editorial:persistent endeavors for the enhancement of dissolution and oral bioavailability. Acta Pharm Sin B 2019;9:2-3.
11. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov 2004;3:785-96.
12. Müller RH, Keck CM. Twenty years of drug nanocrystals:where are we, and where do we go?. Eur J Pharm Biopharm 2012;80:1-3.
13. Gao L, Liu GY, Ma JL, Wang XQ, Zhou L, Li X, et al. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm Res 2013;30:307-24.
14. Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res 2020;24:3.
15. Patel V, Sharma OP, Mehta T. Nanocrystal:a novel approach to overcome skin barriers for improved topical drug delivery. Expet Opin Drug Deliv 2018;15:351-68.
16. Lu Y, Li Y, Wu W. Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B 2016;6:106-13.
17. Liu T, Yu XX, Yin HP, Möschwitzer JP. Advanced modification of drug nanocrystals by using novel fabrication and downstream approaches for tailor-made drug delivery. Drug Deliv 2019;26:1092-103.
18. Shi TT, Lv YJ, Huang WZ, Fang ZZ, Qi JP, Chen ZJ, et al. Enhanced transdermal delivery of curcumin nanosuspensions:a mechanistic study based on co-localization of particle and drug signals. Int J Pharm 2020;588:119737.
19. Pardhi VP, Verma T, Flora SJS, Chandasana H, Shukla R. Nanocrystals:an overview of fabrication, characterization and therapeutic applications in drug delivery. Curr Pharmaceut Des 2018;24:5129-46.
20. Cheng ZY, Lian YM, Kamal Z, Ma X, Chen JJ, Zhou XB, et al. Nanocrystals technology for pharmaceutical science. Curr Pharmaceut Des 2018;24:2497-507.
21. Malamatari M, Somavarapu S, Taylor KM, Buckton G. Solidification of nanosuspensions for the production of solid oral dosage forms and inhalable dry powders. Expet Opin Drug Deliv 2016;13:435-50.
22. Wang YC, Zheng Y, Zhang L, Wang QW, Zhang DR. Stability of nanosuspensions in drug delivery. J Control Release 2013;172:1126-41.
23. Gao L, Liu GY, Ma JL, Wang XQ, Zhou L, Li X. Drug nanocrystals:In vivo performances. J Control Release 2012;160:418-30.
24. Shah DA, Murdande SB, Dave RH. A Review:Pharmaceutical and pharmacokinetic aspect of nanocrystalline suspensions. J Pharmacol Sci 2016;105:10-24.
25. Lu Y, Qi JP, Dong XC, Zhao WL, Wu W. The in vivo fate of nanocrystals. Drug Discov Today 2017;22:744-50.
26. Wu W, Li TL. Unraveling the in vivo fate and cellular pharmacokinetics of drug nanocarriers. Adv Drug Deliv Rev 2019;143:1-2.
27. Miao XQ, Li Y, Wang XQ, Lee SM, Zheng Y. Transport mechanism of coumarin 6 nanocrystals with two particle sizes in MDCKII monolayer and larval zebrafish. ACS Appl Mater Interfaces 2016;8:12620-30.
28. Vidlářová L, Romero GB, Hanuš J, Štěpánek F, Müller RH. Nanocrystals for dermal penetration enhancement-effect of concentration and underlying mechanisms using curcumin as model. Eur J Pharm Biopharm 2016;104:216-25.
29. Chan CPY, Bruemmel Y, Seydack M, Sin KK, Wong LW, MeriskoLiversidge E, et al. Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal Chem 2004;76:3638-45.
30. Corrias F, Schlich M, Sinico C, Pireddu R, Valenti D, Fadda AM, et al. Nile red nanosuspensions as investigative model to study the follicular targeting of drug nanocrystals. Int J Pharm 2017;524:1-8.
31. Zhao RS, Hollis CP, Zhang H, Sun LL, Gemeinhart RA, Li TL. Hybrid nanocrystals:achieving concurrent therapeutic and bioimaging functionalities toward solid tumors. Mol Pharm 2011;8:1985-91.
32. Hollis CP, Weiss HL, Leggas M, Evers BM, Gemeinhart RA, Li TL. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals:lessons learned of the EPR effect and image-guided drug delivery. J Control Release 2013;172:12-21.
33. Hollis CP, Weiss HL, Evers BM, Gemeinhart RA, Li TL. In vivo investigation of hybrid Paclitaxel nanocrystals with dual fluorescent probes for cancer theranostics. Pharm Res 2014;31:1450-9.
34. Chen Y, Li TL. Cellular Uptake Mechanism of paclitaxel nanocrystals determined by confocal imaging and kinetic measurement. AAPS J 2015;17:1126-34.
35. Gao W, Chen Y, Thompson DH, Park K, Li TL. Impact of surfactant treatment of paclitaxel nanocrystals on biodistribution and tumor accumulation in tumor-bearing mice. J Control Release 2016;237:168-76.
36. Yang YQ, Lv YJ, Shen CY, Shi TT, Wu W. In vivo dissolution of poorly water-soluble drugs:proof of concept based on fluorescence bioimaging. Acta Pharm Sin B 2020. Available from:https://doi.org/10.1016/j.apsb.2020.08.002.
37. Zhang JF, Corpstein CD, Li TL. Intracellular uptake of nanocrystals:probing with aggregation-induced emission of fluorescence and kinetic modeling. Acta Pharm Sin B 2020. Available from:https://doi.org/10.1016/j.apsb.2020.09.017.
38. Hu XW, Dong XC, Lu Y, Qi JP, Zhao WL, Wu W. Bioimaging of nanoparticles:The crucial role of discriminating nanoparticles from free probes. Drug Discov Today 2017;22:382-7.
39. Gao W, Lee D, Meng ZJ, Li TL. Exploring intracellular fate of drug nanocrystals with crystal-integrated and environment-sensitive fluorophores. J Control Release 2017;267:214-22.
40. Shen CY, Yang YQ, Shen BD, Xie YK, Qi JP, Dong XC, et al. Selfdiscriminating fluorescent hybrid nanocrystals:efficient and accurate tracking of translocation via oral delivery. Nanoscale 2017;10:436-50.
41. Xie YK, Shi BK, Xia F, Qi JP, Dong XC, Zhao WL, et al. Epithelia transmembrane transport of orally administered ultrafine drug particles evidenced by environment sensitive fluorophores in cellular and animal studies. J Control Release 2018;270:65-75.
42. Wang T, Qi JP, Ding N, Dong XC, Zhao WL, Lu Y, et al. Tracking translocation of self-discriminating curcumin hybrid nanocrystals following intravenous delivery. Int J Pharm 2018;546:10-9.
43. Lu Y, Lv YJ, Li TL. Hybrid drug nanocrystals. Adv Drug Deliv Rev 2019;143:115-33.
44. Wang YF, Zhang YX, Wang JJ, Liang XJ. Aggregation-induced emission (AIE) fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems. Adv Drug Deliv Rev 2019; 143:161-76.
45. Qi JP, Hu XW, Dong XC, Lu Y, Lu HP, Zhao WL, et al. Towards more accurate bioimaging of drug nanocarriers:turning aggregation-caused quenching into a useful tool. Adv Drug Deliv Rev 2019;143:206-25.
46. Chen TK, He B, Tao JS, He Y, Deng HL, Wang XQ, et al. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and in vivo biofate of nanomedicines. Adv Drug Deliv Rev 2019;143:177-205.
47. He HS, Wang LT, Ma YH, Yang YQ, Lv YJ, Zhang ZC, et al. The biological fate of orally administered mPEG-PDLLA polymeric micelles. J Control Release 2020;327:725-36.
48. Yu Z, Fan WF, Wang LT, He HS, Lv YJ, Qi JP, et al. Slowing down lipolysis significantly enhances the oral absorption of intact solid lipid nanoparticles. Biomater Sci 2019;7:4273-82.
49. He HS, Zhang J, Xie YC, Lu Y, Qi JP, Ahmad E, et al. Bioimaging of intravenous polymeric micelles based on discrimination of integral particles using an environment-responsive probe. Mol Pharm 2016;13:4013-9.
50. He HS, Jiang SF, Xie YC, Lu Y, Qi JP, Dong XC, et al. Reassessment of long circulation via monitoring of integral polymeric nanoparticles justifies a more accurate understanding. Nanoscale Horiz 2018;3:397-407.
51. Xia F, Fan WF, Jiang SF, Ma YH, Lu Y, Qi JP, et al. Size-dependent translocation of nanoemulsions via oral delivery. ACS Appl Mater Interfaces 2017;9:21660-72.
52. Hu XW, Fan WF, Yu Z, Lu Y, Qi JP, Zhang J, et al. Evidence does not support absorption of intact solid lipid nanoparticles via oral delivery. Nanoscale 2016;8:7024-35.
53. Hu XW, Zhang J, Yu Z, Xie YC, He HS, Qi JP, et al. Environmentresponsive aza-BODIPY dyes quenching in water as potential probes to visualize the in vivo fate of lipid-based nanocarriers. Nanomedicine 2015;11:1939-48.
54. Gotch F, Nadell J, Edelman IS. Gastrointestinal water and electroyltes. IV. The equilibration of deuterium oxide (D2O) in gastrointestinal contents and the proportion of total body water (T.B.W.) in the gastrointestinal tract. J Clin Invest 1957;36:289-96.
55. Bi C, Miao XQ, Chow SF, Wu WJ, Yan R, Liao YH, et al. Particle size effect of curcumin nanosuspensions on cytotoxicity, cellular internalization, in vivo pharmacokinetics and biodistribution. Nanomedicine 2017;13:943-53.
56. Wang XH, Liu Y, Shen CY, Shen BD, Zhong RN, Yuan HL. Effect of particle size on in vitro and in vivo behavior of astilbin nanosuspensions. J Drug Deliv Sci Technol 2019;52:778-83.
57. Zhang WL, Wang GJ, See E, Shaw JP, Baguley BC, Liu JP, et al. Postinsertion of poloxamer 188 strengthened liposomal membrane and reduced drug irritancy and in vivo precipitation, superior to PEGylation. J Control Release 2015;203:161-9.
58. Yao MF, He LL, McClements DJ, Xiao H. Uptake of gold nanoparticles by intestinal epithelial cells:impact of particle size on their absorption, accumulation, and toxicity. J Agric Food Chem 2015;63:8044-9.
59. Sigfridsson K, Skantze P, Skantze U, Svensson L, Lofgren L, Nordell P, et al. Nanocrystal formulations of a poorly soluble drug. 2. Evaluation of nanocrystal liver uptake and distribution after intravenous administration to mice. Int J Pharm 2017;524:248-56.
60. Li HL, Zhao XB, Ma YK, Zhai GX, Li LB, Lou HX. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 2009;133:238-44.
Similar articles:
1.Anan Yaghmur, Huiling Mu.Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles[J]. Acta Pharmaceutica Sinica B, 2021,11(4): 871-885
2.Xiangjun Meng, Zhi Zhang, Jin Tong, Hui Sun, John Paul Fawcett, Jingkai Gu.The biological fate of the polymer nanocarrier material monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid) in rat[J]. Acta Pharmaceutica Sinica B, 2021,11(4): 1003-1009
3.Chunliu Zhu, Shuang Gong, Jinsong Ding, Miaorong Yu, Ejaj Ahmad, Yi Feng, Yong Gan.Supersaturated polymeric micelles for oral silybin delivery: the role of the Soluplus-PVPVA complex[J]. Acta Pharmaceutica Sinica B, 2019,9(1): 107-117
4.Yi Lu, Ye Li, Wei Wu.Injected nanocrystals for targeted drug delivery[J]. Acta Pharmaceutica Sinica B, 2016,6(2): 106-113
Similar articles: