Original articles
Wenhao Wang, Zhengwei Huang, Yanbei Li, Wenhua Wang, Jiayu Shi, Fangqin Fu, Ying Huang, Xin Pan, Chuanbin Wu. Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: A proofof-concept study[J]. Acta Pharmaceutica Sinica B, 2021, 11(4): 1030-1046

Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: A proofof-concept study
Wenhao Wanga, Zhengwei Huanga, Yanbei Lia, Wenhua Wanga, Jiayu Shia, Fangqin Fub, Ying Huangb, Xin Pana, Chuanbin Wua
a School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China;
b College of Pharmacy, Jinan University, Guangzhou 511443, China
Abstract:
When nanoparticles were introduced into the biological media, the protein corona would be formed, which endowed the nanoparticles with new bio-identities. Thus, controlling protein corona formation is critical to in vivo therapeutic effect. Controlling the particle size is the most feasible method during design, and the influence of media pH which varies with disease condition is quite important. The impact of particle size and pH on bovine serum albumin (BSA) corona formation of solid lipid nanoparticles (SLNs) was studied here. The BSA corona formation of SLNs with increasing particle size (120-480 nm) in pH 6.0 and 7.4 was investigated. Multiple techniques were employed for visualization study, conformational structure study and mechanism study, etc. "BSA corona-caused aggregation" of SLN2-3 was revealed in pH 6.0 while the dispersed state of SLNs was maintained in pH 7.4, which significantly affected the secondary structure of BSA and cell uptake of SLNs. The main interaction was driven by van der Waals force plus hydrogen bonding in pH 7.4, while by electrostatic attraction in pH 6.0, and size-dependent adsorption was confirmed. This study provides a systematic insight to the understanding of protein corona formation of SLNs.
Key words:    Protein corona    Solid lipid nanoparticles    BSA corona-Caused aggregation    Nanoparticle-protein interaction    Size effect    Cell uptake    Medium pH    Conformational structure   
Received: 2020-07-06     Revised: 2020-08-24
DOI: 10.1016/j.apsb.2020.10.023
Funds: The authors would like to acknowledge the project grants from National Natural Science Foundation of China (81703431 and 81673375) and from the Natural Science Fund Project of Guangdong Province (2016A030312013, China). The authors would like to thank Haijiao Xie from Shiyanjia Lab (www. shiyanjia.com) for the AutoDock molecular docking technique.
Corresponding author: Ying Huang, huangy2007@jnu.edu.cn;Chuanbin Wu, wuchuanb@mail.sysu.edu.cn     Email:huangy2007@jnu.edu.cn;wuchuanb@mail.sysu.edu.cn
Author description:
Service
PDF(KB) Free
Print
0
Authors
Wenhao Wang
Zhengwei Huang
Yanbei Li
Wenhua Wang
Jiayu Shi
Fangqin Fu
Ying Huang
Xin Pan
Chuanbin Wu

References:
1. Stefanick JF, Omstead DT, Kiziltepe T, Bilgicer B. Dual-receptor targeted strategy in nanoparticle design achieves tumor cell selectivity through cooperativity. Nanoscale 2019;11:4414-27.
2. Wang YB, Wu WB, Liu JJ, Manghnani PN, Hu F, Ma D, et al. Cancercell-activated photodynamic therapy assisted by Cu(II)-based metalorganic framework. ACS Nano 2019;13:6879-90.
3. Wan SS, Cheng Q, Zeng X, Zhang XZ. A Mn(III)-sealed metalorganic framework nanosystem for redox-unlocked tumor theranostics. ACS Nano 2019;13:6561-71.
4. Rezaei G, Mojtaba Daghighi S, Raoufi M, Esfandyari-Manesh M, Rahimifard M, Iranpur Mobarakeh V, et al. Synthetic and biological identities of polymeric nanoparticles influencing the cellular delivery:an immunological link. J Colloid Interface Sci 2019;556:476-91.
5. Sousa F, Dhaliwal HK, Gattacceca F, Sarmento B, Amiji MM. Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J Control Release 2019;309:37-47.
6. Fedorenko SV, Stepanov A, Sibgatullina G, Samigullin D, Mukhitov AR, Petrov KA, et al. Fluorescent magnetic nanoparticles for modulating the level of intracellular Ca2+ in motoneurons. Nanoscale 2019;11:16103-13.
7. Han Y, Gao ZG, Chen LQ, Kang L, Huang W, Jin MJ, et al. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm Sin B 2019;9:902-22.
8. Li C, Wang JC, Wang YG, Gao HL, Wei G, Huang YZ, et al. Recent progress in drug delivery. Acta Pharm Sin B 2019;9:1145-62.
9. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine:progress, challenges and opportunities. Nat Rev Cancer 2017;17:20-37.
10. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy:challenges, opportunities, and clinical applications. J Control Release 2015;200:138-57.
11. Jain P, Pawar RS, Pandey RS, Madan J, Pawar S, Lakshmi PK, et al. In-vitro in-vivo correlation (IVIVC) in nanomedicine:is protein corona the missing link?. Biotechnol Adv 2017;35:889-904.
12. Charbgoo F, Nejabat M, Abnous K, Soltani F, Taghdisi SM, Alibolandi M, et al. Gold nanoparticle should understand protein corona for being a clinical nanomaterial. J Control Release 2018;272:39-53.
13. Bertrand N, Grenier P, Mahmoudi M, Lima EM, Appel EA, Dormont F, et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics Nicolas. Nat Commun 2017;8:1-8.
14. Francia V, Yang K, Deville S, Reker-smit C, Nelissen I, Salvati A. Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano 2019;13:11107-21.
15. Lynch I, Salvati A, Dawson KA. Protein-nanoparticle interactions:what does the cell see?. Nat Nanotechnol 2009;4:546-7.
16. Yan Y, Gause KT, Kamphuis MMJ, Ang CS, O'Brien-Simpson NM, Lenzo JC, et al. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano 2013;7:10960-70.
17. Schäffler M, Sousa F, Wenk A, Sitia L, Hirn S, Schleh C, et al. Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials 2014;35:3455-66.
18. MiclǍuș T, Beer C, Chevallier J, Scavenius C, Bochenkov VE, Enghild JJ, et al. Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nat Commun 2016;7:1-10.
19. De Paoli Lacerda SH, Park JJ, Meuse C, Pristinski D, Beker ML, Karim A, et al. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 2009;26:365-79.
20. Givens BE, Wilson E, Fiegel J. The effect of salts in aqueous media on the formation of the BSA corona on SiO2 nanoparticles. Colloids Surf B Biointerfaces 2019;179:374-81.
21. Tran S, DeGiovanni P-J, Piel B, Rai P. Cancer nanomedicine:a review of recent success in drug delivery. Clin Transl Med 2017;6:1-21.
22. del Caño R, Mateus L, Sánchez-Obrero G, Sevilla JM, Madueño R, Blázquez M, et al. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media:the stability depends on solution pH and protein properties. J Colloid Interface Sci 2017;505:1165-71.
23. Dewald I, Isakin O, Schubert J, Kraus T, Chanana M. Protein identity and environmental parameters determine the final physicochemical properties of protein-coated metal nanoparticles. J Phys Chem C 2015; 119:25482-92.
24. Piella J, Bastús NG, Puntes V. Size-dependent protein-nanoparticle interactions in citrate-stabilized gold nanoparticles:the emergence of the protein corona. Bioconjugate Chem 2017;28:88-97.
25. Shang W, Nuffer JH, Muñiz-Papandrea VA, Colón W, Siegel RW, Dordick JS. Cytochrome c on silica nanoparticles:influence of nanoparticle size on protein structure, stability, and activity. Small 2009;5:470-6.
26. Kumar S, Aswal VK, Callow P. PH-dependent interaction and resultant structures of silica nanoparticles and lysozyme protein. Langmuir 2014;30:1588-98.
27. Partikel K, Korte R, Stein NC, Mulac D, Herrmann FC, Humpf HU, et al. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. Eur J Pharm Biopharm 2019;141:70-80.
28. Shen MY, Liu TI, Yu TW, Kv R, Chiang WH, Tsai YC, et al. Hierarchically targetable polysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer. Biomaterials 2019;197:86-100.
29. Nafee N, Husari A, Maurer CK, Lu C, De Rossi C, Steinbach A, et al. Antibiotic-free nanotherapeutics:ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release 2014; 192:131-40.
30. Ghanbar S, Fumakia M, Ho EA, Liu S. A new strategy for battling bacterial resistance:turning potent, non-selective and potentially nonresistance-inducing biocides into selective ones. Nanomed Nanotechnol Biol Med 2018;14:471-81.
31. Wang J, Wang H, Zhu R, Liu Q, Fei J, Wang S. Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1b transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials 2015;53:475-83.
32. Wang T, Wang D, Yu H, Wang M, Liu J, Feng B, et al. Intracellularly acid-switchable multifunctional micelles for combinational photo/-chemotherapy of the drug-resistant tumor. ACS Nano 2016;10:3496-508.
33. Torchilin VP. Multifunctional stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014;13:813-27.
34. Yamamoto S, Yamazaki S, Shimizu T, Takeshima T, Fukuma S, Yamamoto Y, et al. Body temperature at the emergency department as a predictor of mortality in patients with bacterial infection. Via Medici 2016;95:e3628.
35. Huang ZW, Wu MJ, Ma C, Bai XQ, Zhang XJ, Zhao ZY, et al. Spectroscopic quantification of surfactants in solid lipid nanoparticles. J Pharm Innov 2019;15:155-62.
36. Wahgiman NA, Salim N, Rahman MBA, Ashari SE. Optimization of nanoemulsion containing gemcitabine and evaluation of its cytotoxicity towards human fetal lung fibroblast (MRC5) and human lung carcinoma (A549) cells. Int J Nanomed 2019;14:7323-38.
37. Ballav N. High-conducting polyaniline via oxidative polymerization of aniline by MnO2, PbO2 and NH4VO3. Mater Lett 2004;58:3257-60.
38. Tayeh N, Rungassamy T, Albani JR. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins. J Pharmaceut Biomed Anal 2009;50:107-16.
39. Yin MM, Dong P, Chen WQ, Xu SP, Yang LY, Jiang FL, et al. Thermodynamics and mechanisms of the interactions between ultrasmall fluorescent gold nanoclusters and human serum albumin, gglobulins, and transferrin:a spectroscopic approach. Langmuir 2017; 33:5108-16.
40. Manjubaashini N, Kesavan MP, Rajesh J, Daniel Thangadurai T. Multispectroscopic and bioimaging approach for the interaction of rhodamine 6G capped gold nanoparticles with bovine serum albumin. J Photochem Photobiol B Biol 2018;183:374-84.
41. Yang HY, Wang M, Zhang YM, Li F, Yu SN, Zhu L, et al. Conformational-transited protein corona regulated cell-membrane penetration and induced cytotoxicity of ultrasmall Au nanoparticles. RSC Adv 2019;9:4435-44.
42. Shaikh SMT, Seetharamappa J, Kandagal PB, Manjunatha DH. In vitro study on the binding of anti-coagulant vitamin to bovine serum albumin and the influence of toxic ions and common ions on binding. Int J Biol Macromol 2007;41:81-6.
43. Jiang M, Xie MX, Zheng D, Liu Y, Li XY, Chen X. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. J Mol Struct 2004;692:71-80.
44. Lehrer SS. Solute perturbation of protein fluorescence. the quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 1971;10:3254-63.
45. He HS, Zhang J, Xie YC, Lu Y, Qi JP, Ahmad E, et al. Bioimaging of intravenous polymeric micelles based on discrimination of integral particles using an environment-responsive probe. Mol Pharm 2016;13:4013-9.
46. Ahmad E, Feng YH, Qi JP, Fan WF, Ma YH, He HS, et al. Evidence of nose-to-brain delivery of nanoemulsions:cargoes but not vehicles. Nanoscale 2017;9:1174-83.
47. Feng YH, He HS, Li FQ, Lu Y, Qi JP, Wu W. An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discov Today 2018; 23:1079-88.
48. Dominguez-Medina S, Kisley L, Tauzin LJ, Hoggard A, Shuang BDS, Indrasekara AS, et al. Adsorption and unfolding of a single protein triggers nanoparticle aggregation. ACS Nano 2016;10:2103-12.
49. Yang HY, Wang M, Zhang YM, Liu XY, Yu SN, Guo YM, et al. Detailed insight into the formation of protein corona:conformational change, stability and aggregation. Int J Biol Macromol 2019;135:1114-22.
50. Grosjean R, Delacroix S, Gouget G, Beaunier P, Ersen O, Ihiawakrim D, et al. High pressures pathway toward boron-based nanostructured solids. Dalton Trans 2017;47:7634-9.
51. Wang GK, Yan CL, Gao SY, Liu YF. Surface chemistry of gold nanoparticles determines interactions with bovine serum albumin. Mater Sci Eng C 2019;103:109856.
52. Roach P, Farrar D, Perry CC. Interpretation of protein adsorption:surface-induced conformational changes. J Am Chem Soc 2005;127:8168-73.
53. Chittur KK. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials 1998;19:357-69.
54. Bouchemal K. New challenges for pharmaceutical formulations and drug delivery systems characterization using isothermal titration calorimetry. Drug Discov Today 2008;13:960-72.
55. Chen SF, Li LY, Zhao C, Zheng J. Surface hydration:principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010;51:5283-93.
56. Nayak PS, Borah SM, Gogoi H, Asthana S, Bhatnagar R, Jha AN, et al. Lactoferrin adsorption onto silver nanoparticle interface:Implications of corona on protein conformation, nanoparticle cytotoxicity and the formulation adjuvanticity. Chem Eng J 2019;361:470-84.
57. Ajdari N, Vyas C, Bogan SL, Lwaleed BA, Cousins BG. Gold nanoparticle interactions in human blood:A model evaluation. Nanomed Nanotechnol Biol Med 2017;13:1531-42.
58. Revilla J, Elaïssari A, Carriere P, Pichot C. Adsorption of bovine serum albumin onto polystyrene latex particles bearing saccharidic moieties. J Colloid Interface Sci 1996;180:405-12.
59. Baier G, Costa C, Zeller A, Baumann D, Sayer C, Araujo PHH, et al. BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake. Macromol Biosci 2011;11:628-38.
60. He HS, Xie YC, Lv Y, Qi JP, Dong XC, Zhao WL, et al. Bioimaging of intact polycaprolactone nanoparticles using aggregation-caused quenching probes:size-dependent translocation via oral delivery. Adv Healthc Mater 2018;1800711:1-11.
61. Wang T, Qi JP, Ding N, Dong XC, Zhao WL, Lu Y, et al. Tracking translocation of self-discriminating curcumin hybrid nanocrystals following intravenous delivery. Int J Pharm 2018;546:10-9.
62. Chen ZJ, Lv YJ, Qi JP, Zhu QG, Lu Y, Wu W. Overcoming or circumventing the stratum corneum barrier for efficient transcutaneous immunization. Drug Discov Today 2018;23:181-6.
Similar articles: