Original articles
Yinqian Yang, Yongjiu Lv, Chengying Shen, Tingting Shi, Haisheng He, Jianping Qi, Xiaochun Dong, Weili Zhao, Yi Lu, Wei Wu. In vivo dissolution of poorly water-soluble drugs: Proof of concept based on fluorescence bioimaging[J]. Acta Pharmaceutica Sinica B, 2021, 11(4): 1056-1068

In vivo dissolution of poorly water-soluble drugs: Proof of concept based on fluorescence bioimaging
Yinqian Yanga, Yongjiu Lva, Chengying Shena, Tingting Shia, Haisheng Hea, Jianping Qia, Xiaochun Donga, Weili Zhaoa, Yi Lua, Wei Wua,b
a Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China;
b Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
In vitro-in vivo correlation (IVIVC) of solid dosage forms should be established basically between in vitro and in vivo dissolution of active pharmaceutical ingredients. Nevertheless, in vivo dissolution profiles have never been accurately portrayed. The current practice of IVIVC has to resort to in vivo absorption fractions (Fa). In this proof-of-concept study, in vivo dissolution of a model poorly watersoluble drug fenofibrate (FNB) was investigated by fluorescence bioimaging. FNB crystals were first labeled by near-infrared fluorophores with aggregation-caused quenching properties. The dyes illuminated FNB crystals but quenched immediately and absolutely once been released into aqueous media, enabling accurate monitoring of residual drug crystals. The linearity established between fluorescence and crystal concentration justified reliable quantification of FNB crystals. In vitro dissolution was first measured following pharmacopoeia monograph protocols with well-documented IVIVC. The synchronicity between fluorescence and in vitro dissolution of FNB supported using fluorescence as a measure for determination of dissolution. In vitro dissolution correlated well with in vivo dissolution, acquired by either live or ex vivo imaging. The newly established IVIVC was further validated by correlating both in vitro and in vivo dissolution with Fa obtained from pharmacokinetic data.
Key words:    In vivo dissolution    Fenofibrate    Fluorescence    Aggregation-caused quenching    Bioimaging    IVIVC   
Received: 2020-04-18     Revised: 2020-06-16
DOI: 10.1016/j.apsb.2020.08.002
Funds: This work was supported by the National Natural Science Foundation of China (Nos. 81973247, 81872815, 81872826 and 81690263) and Science and Technology Commission of Shanghai Municipality (19XD1400300, China). We are grateful for Prof. Dr. Yu-Kyoung Oh of Seoul National University Nano Biodrug Delivery Lab for the illuminating comments she provided.
Corresponding author: Wei Wu, wuwei@shmu.edu.cn     Email:wuwei@shmu.edu.cn
Author description:
PDF(KB) Free
Yinqian Yang
Yongjiu Lv
Chengying Shen
Tingting Shi
Haisheng He
Jianping Qi
Xiaochun Dong
Weili Zhao
Yi Lu
Wei Wu

1. Allen Jr LV, Popovich NG, Aansel HC. Ansel's pharmaceutical dosage forms and drug delivery systems. 8th ed. Baltimore:Lippincott Williams & Wilkins; 2013.
2. Shargel L, Yu ABC. Applied biopharmaceutics & pharmacokinetics. 7th ed. New York:McGraw-Hill Education; 2016.
3. Guo M, Wei M, Li W, Guo M, Guo C, Ma M, et al. Impacts of particle shapes on the oral delivery of drug nanocrystals:mucus permeation, transepithelial transport and bioavailability. J Control Release 2019; 307:64-75.
4. Fu Q, Sun J, Ai X, Zhang P, Li M, Wang Y, et al. Nimodipine nanocrystals for oral bioavailability improvement:role of mesenteric lymph transport in the oral absorption. Int J Pharm 2013;448:290-7.
5. Xie Y, Shi B, Xia F, Qi J, Dong X, Zhao W, et al. Epithelia transmembrane transport of orally administered ultrafine drug particles evidenced by environment sensitive fluorophores in cellular and animal studies. J Control Release 2018;270:65-75.
6. Shen C, Yang Y, Shen B, Xie Y, Qi J, Dong X, et al. Self-discriminating fluorescent hybrid nanocrystals:efficient and accurate tracking of translocation via oral delivery. Nanoscale 2017;10:436-50.
7. Sugano K, Terada K. Rate- and extent-limiting factors of oral drug absorption:theory and applications. J Pharm Sci 2015;104:2777-88.
8. Shi Q, Moinuddin SM, Cai T. Advances in coamorphous drug delivery systems. Acta Pharm Sin B 2019;9:19-35.
9. Cook JA. A technique to estimate in vivo dissolution profiles without data from a solution. AAPS J 2012;14:433-6.
10. Kostewicz ES, Abrahamsson B, Brewster M, Brouwers J, Butler J, Carlert S, et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur J Pharmaceut Sci 2014;57:342-66.
11. Bou-Chacra N, Melo KJC, Morales IAC, Stippler ES, Kesisoglou F, Yazdanian M, et al. Evolution of choice of solubility and dissolution media after two decades of Biopharmaceutical Classification System. AAPS J 2017;19:989-1001.
12. Charalabidis A, Sfouni M, Bergstrom C, Macheras P. The biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS):beyond guidelines. Int J Pharm 2019;566:264-81.
13. Hens B, Sinko PD, Job N, Dean M, Al-Gousous J, Salehi N, et al. Formulation predictive dissolution (fPD) testing to advance oral drug product development:an introduction to the US FDA funded ‘21st Century BA/BE’ project. Int J Pharm 2018;548:120-7.
14. Kaur N, Narang A, Bansal AK. Use of biorelevant dissolution and PBPK modeling to predict oral drug absorption. Eur J Pharm Biopharm 2018;129:222-46.
15. Emami J. In vitro-in vivo correlation:from theory to applications. J Pharm Pharmaceut Sci 2006;9:169-89.
16. Ruiz Picazo A, Martinez-Martinez MT, Colon-Useche S, Iriarte R, Sanchez-Dengra B, Gonzalez-Alvarez M, et al. In vitro dissolution as a tool for formulation selection:telmisartan two-step IVIVC. Mol Pharm 2018;15:2307-15.
17. Suarez-Sharp S, Li M, Duan J, Shah H, Seo P. Regulatory experience with in vivo in vitro correlations (IVIVC) in new drug applications. AAPS J 2016;18:1379-90.
18. U.S. Food and Drug Administration. Guidance for industry-extended release oral dosage forms-development, evaluation and application of in vitro-in vivo correlations. Available from:https://www.fda.gov/regulatory-information/search-fda-guidance-documents/extendedrelease-oral-dosage-forms-development-evaluation-and-applicationvitroin-vivo-correlations.[Accessed 16 April 2020].
19. U.S. Food and Drug Administration. Waiver on in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a Biopharmaceutics classification systems. Available from:https://www.fda.gov/regulatory-information/search-fda-guidancedocuments/waiver-vivo-bioavailability-and-bioequivalence-studiesimmediate-release-solid-oral-dosage-forms.[Accessed 16 April 2020].
20. Lu Y, Kim S, Park K. In vitro-in vivo correlation:perspectives on model development. Int J Pharm 2011;418:142-8.
21. Kytariolos J, Dokoumetzidis A, Macheras P. Power law IVIVC:an application of fractional kinetics for drug release and absorption. Eur J Pharmaceut Sci 2010;41:299-304.
22. Xu H, Shi Y, Vela S, Marroum P, Gao P. Developing quantitative in vitro-in vivo correlation for fenofibrate immediate-release formulations with the biphasic dissolution-partition test method. J Pharm Sci 2018;107:476-87.
23. Wagner JG. Estimation of theophylline absorption rate by means of the Wagner-Nelson equation. J Allergy Clin Immunol 1986;78:681-8.
24. Wagner JG. Effect of using an incorrect elimination rate constant in application of the Wagner-Nelson method to theophylline data in cases of zero order absorption. Biopharm Drug Dispos 1984;5:75-83.
25. Ostrowski M, Wilkowska E, Baczek T. The influence of averaging procedure on the accuracy of IVIVC predictions:immediate release dosage form case study. J Pharm Sci 2010;99:5040-5.
26. Wang Y, Nedelman J. Bias in the Wagner-Nelson estimate of the fraction of drug absorbed. Pharm Res (N Y) 2002;19:470-6.
27. Cardot JM, Davit BM. In vitro-in vivo correlations:tricks and traps. AAPS J 2012;14:491-9.
28. Kaur P, Jiang X, Duan J, Stier E. Applications of in vitro-in vivo correlations in generic drug development:case studies. AAPS J 2015; 17:1035-9.
29. Nguyen MA, Flanagan T, Brewster M, Kesisoglou F, Beato S, Biewenga J, et al. A survey on IVIVC/IVIVR development in the pharmaceutical industry-past experience and current perspectives. Eur J Pharmaceut Sci 2017;102:1-13.
30. Lennernas H, Lindahl A, Van Peer A, Ollier C, Flanagan T, Lionberger R, et al. In vivo predictive dissolution (IPD) and biopharmaceutical modeling and simulation:future use of modern approaches and methodologies in a regulatory context. Mol Pharm 2017; 14:1307-14.
31. Roudier B, Davit B, Schutz H, Cardot JM. Impact of data base structure in a successful in vitro-in vivo correlation for pharmaceutical products. AAPS J 2015;17:24-34.
32. Brouwers J, Augustijns P. Resolving intraluminal drug and formulation behavior:gastrointestinal concentration profiling in humans. Eur J Pharmaceut Sci 2014;61:2-10.
33. Hens B, Corsetti M, Spiller R, Marciani L, Vanuytsel T, Tack J, et al. Exploring gastrointestinal variables affecting drug and formulation behavior:methodologies, challenges and opportunities. Int J Pharm 2017;519:79-97.
34. Butler J, Hens B, Vertzoni M, Brouwers J, Berben P, Dressman J, et al. In vitro models for the prediction of in vivo performance of oral dosage forms:recent progress from partnership through the IMI OrBiTo collaboration. Eur J Pharm Biopharm 2019;136:70-83.
35. Knutson PFT, Ahlström H, Magnusson A, Tannergren C, Lennerna H. Increased understanding of intestinal drug permeability determined by the LOC-I-GUT approach using multislice computed tomography. Mol Pharm 2008;6:2-10.
36. Petri N, Tannergren C, Holst B, Mellon FA, Bao Y, Plumb GW, et al. Absorption/metabolism of sulforaphane and quercetin, and regulation of phase II enzymes, in human jejunum in vivo. Drug Metab Dispos 2003;31:805-13.
37. Brouwers J, Ingels F, Tack J, Augustijns P. Determination of intraluminal theophylline concentrations after oral intake of an immediateand a slow-release dosage form. J Pharm Pharmacol 2005;57:987-96.
38. Koenigsknecht MJ, Baker JR, Wen B, Frances A, Zhang H, Yu A, et al. In vivo dissolution and systemic absorption of immediate release ibuprofen in human gastrointestinal tract under fed and fasted conditions. Mol Pharm 2017;14:4295-304.
39. Bergstrom CA, Holm R, Jorgensen SA, Andersson SB, Artursson P, Beato S, et al. Early pharmaceutical profiling to predict oral drug absorption:current status and unmet needs. Eur J Pharmaceut Sci 2014;57:173-99.
40. Bermejo M, Paixão P, Hens B, Tsume Y, Koenigsknecht MJ, Baker JR, et al. Linking the gastrointestinal behavior of ibuprofen with the systemic exposure between and within humansdpart 1:fasted state conditions. Mol Pharm 2018;15:5454-67.
41. Lu Y, Lv Y, Li T. Hybrid drug nanocrystals. Adv Drug Deliv Rev 2019; 143:115-33.
42. Qi J, Hu X, Dong X, Lu Y, Lu H, Zhao W, et al. Towards more accurate bioimaging of drug nanocarriers:turning aggregation-caused quenching into a useful tool. Adv Drug Deliv Rev 2019;143:206-25.
43. Wang L, Liu M, Chen Y. Carbon dots and terbium co-enhanced fluorescence of europium nanoparticles for cell Imaging. J Biomed Nanotechnol 2018;14:1898-905.
44. Wang B, Lv P, Cai H, Li Y, Zhu H, Lui S, et al. Enzyme-responsive copolymer as a theranostic prodrug for tumor in vivo imaging and efficient chemotherapy. J Biomed Nanotechnol 2019;15:1897-908.
45. Hu D, Chen L, Qu Y, Peng J, Chu B, Hao Y, et al. Oxygen-generating hybrid polymeric nanoparticles with encapsulated doxorubicin and chlorin e6 for trimodal imaging-guided combined chemophotodynamic therapy. Theranostics 2018;8:1558-74.
46. Wang Y, Zhang Y, Wang J, Liang XJ. Aggregation-induced emission (AIE) fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems. Adv Drug Deliv Rev 2019;143:161-76.
47. Chen T, He B, Tao J, He Y, Deng H, Wang X, et al. Application of Förster resonance energy transfer (FRET) technique to elucidate intracellular and in vivo biofate of nanomedicines. Adv Drug Deliv Rev 2019;143:177-205.
48. Hu X, Zhang J, Yu Z, Xie Y, He H, Qi J, et al. Environment-responsive aza-BODIPY dyes quenching in water as potential probes to visualize the in vivo fate of lipid-based nanocarriers. Nanomedicine 2015;11:1939-48.
49. Hu X, Fan W, Yu Z, Lu Y, Qi J, Zhang J, et al. Evidence does not support absorption of intact solid lipid nanoparticles via oral delivery. Nanoscale 2016;8:7024-35.
50. Hu X, Dong X, Lu Y, Qi J, Zhao W, Wu W. Bioimaging of nanoparticles:the crucial role of discriminating nanoparticles from free probes. Drug Discov Today 2017;22:382-7.
51. Ahmad E, Feng Y, Qi J, Fan W, Ma Y, He H, et al. Evidence of noseto-brain delivery of nanoemulsions:cargoes but not vehicles. Nanoscale 2017;9:1174-83.
52. Xia F, Fan W, Jiang S, Ma Y, Lu Y, Qi J, et al. Size-dependent translocation of nanoemulsions via oral delivery. ACS Appl Mater Interfaces 2017;9:21660-72.
53. He H, Zhang J, Xie Y, Lu Y, Qi J, Ahmad E, et al. Bioimaging of intravenous polymeric micelles based on discrimination of integral particles using an environment-responsive probe. Mol Pharm 2016;13:4013-9.
54. Pestieau A, Lebrun S, Cahay B, Brouwers A, Streel B, Cardot JM, et al. Evaluation of different in vitro dissolution tests based on level A in vitro-in vivo correlations for fenofibrate self-emulsifying lipidbased formulations. Eur J Pharm Biopharm 2017;112:18-29.
55. Zuo B, Sun Y, Li H, Liu X, Zhai Y, Sun J, et al. Preparation and in vitro/in vivo evaluation of fenofibrate nanocrystals. Int J Pharm 2013;455:267-75.
56. Hens B, Brouwers J, Corsetti M, Augustijns P. Gastrointestinal behavior of nano- and microsized fenofibrate:in vivo evaluation in man and in vitro simulation by assessment of the permeation potential. Eur J Pharmaceut Sci 2015;77:40-7.
57. Zhao W, Carreira EM. Conformationally restricted aza-bodipy: a highly fluorescent, stable, near-infrared-absorbing dye. Angew Chem Int Ed Engl 2005;44:1677-9.
58. Zhao W, Carreira EM. Conformationally restricted aza-BODIPY: highly fluorescent, stable near-infrared absorbing dyes. Chemistry 2006;12:7254-63.
59. Zhu W, Romanski FS, Meng X, Mitra S, Tomassone MS. Atomistic simulation study of surfactant and polymer interactions on the surface of a fenofibrate crystal. Eur J Pharmaceut Sci 2011;42:452-61.
60. O’Shea JP, Faisal W, Ruane-O’Hora T, Devine KJ, Kostewicz ES, O’Driscoll CM, et al. Lipidic dispersion to reduce food dependent oral bioavailability of fenofibrate: in vitro, in vivo and in silico assessments. Eur J Pharm Biopharm 2015;96:207-16.
61. Guichard JP, Blouquin P, Qing Y. A new formulation of fenofibrate: suprabioavailable tablets. Curr Med Res Opin 2008;16:134-8.
62. Hanafy A, Spahn-Langguth H, Vergnault G, Grenier P, Tubic Grozdanis M, Lenhardt T, et al. Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev 2007;59:419-26.
63. Weng T, Qi J, Lu Y, Wang K, Tian Z, Hu K, et al. The role of lipidbased nano delivery systems on oral bioavailability enhancement of fenofibrate, a BCS II drug: comparison with fast-release formulations. J Nanobiotechnol 2014;12:39.
64. Curtet B, Teillaud E, Reginault P, inventors. Fournier Innovation et Synergie, assignee. Novel dosage form of fenofibrate. United States patent US No. 4895726. January 23, 1980.
65. Yang L, Shao Y, Han HK. Development of omega-3 phospholipidbased solid dispersion of fenofibrate for the enhancement of oral bioavailability. Eur J Pharmaceut Sci 2015;78:103-10.
66. Jadhav NV, Vavia PR. Dodecylamine template-based hexagonal mesoporous silica (HMS) as a carrier for improved oral delivery of fenofibrate. AAPS PharmSciTech 2017;18:2764-73.
67. Yuan H, Zhao W, Wu W. How can aggregation-caused quenching based bioimaging of drug nanocarriers be improved?. Ther Deliv 2020;11:809-12.
68. Li F, Zheng X, Bao Y, Chen T, Zeng J, Xu X, et al. Fenofibrate modified-release pellets with lag phase and high oral bioavailability. Drug Des Dev Ther 2019;13:141-51.
69. Bahloul B, Lassoued MA, Seguin J, Lai-Kuen R, Dhotel H, Sfar S, et al. Self-emulsifying drug delivery system developed by the HLBRSM approach: characterization by transmission electron microscopy and pharmacokinetic study. Int J Pharm 2015;487:56-63.
70. Juenemann D, Jantratid E, Wagner C, Reppas C, Vertzoni M, Dressman JB. Biorelevant in vitro dissolution testing of products containing micronized or nanosized fenofibrate with a view to predicting plasma profiles. Eur J Pharm Biopharm 2011;77:257-64.
71. González-García I, Mangas-Sanjuán V, Merino-Sanjuán M, Bermejo M. In vitro in vivo correlations general concepts methodologies and regulatory applications. Drug Dev Ind Pharm 2015;41: 1935-47.
72. Cardot JM, Beyssac E, Alric M. In vitroein vivo correlation: importance of dissolution in IVIVC. Dissolution Technol 2007;14: 15-9.
73. Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, et al. A smallmolecule dye for NIR-II imaging. Nat Mater 2016;15:235-42.
74. Cai Y, Wei Z, Song C, Tang C, Han W, Dong X. Optical nano-agents in the second near-infrared window for biomedical applications. Chem Soc Rev 2019;48:22-37.
Similar articles: