Short communication
Jinrong Peng, Yao Xiao, Qian Yang, Qingya Liu, Yu Chen, Kun Shi, Ying Hao, Ruxia Han, Zhiyong Qian. Intracellular aggregation of peptidereprogrammed small molecule nanoassemblies enhances cancer chemotherapy and combinatorial immunotherapy[J]. Acta Pharmaceutica Sinica B, 2021, 11(4): 1069-1082

Intracellular aggregation of peptidereprogrammed small molecule nanoassemblies enhances cancer chemotherapy and combinatorial immunotherapy
Jinrong Peng, Yao Xiao, Qian Yang, Qingya Liu, Yu Chen, Kun Shi, Ying Hao, Ruxia Han, Zhiyong Qian
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu 610065, China
The intracellular retention of nanotherapeutics is essential for their therapeutic activity. The immobilization of nanotherapeutics inside target cell types can regulate various cell behaviors. However, strategies for the intracellular immobilization of nanoparticles are limited. Herein, a cisplatin prodrug was synthesized and utilized as a glutathione (GSH)-activated linker to induce aggregation of the cisplatin prodrug/IR820/docetaxel nanoassembly. The nanoassembly has been reprogrammed with peptidecontaining moieties for tumor-targeting and PD-1/PD-L1 blockade. The aggregation of the nanoassemblies is dependent on GSH concentration. Evaluations in vitro and in vivo revealed that GSH-induced intracellular aggregation of the nanoassemblies enhances therapeutic activity in primary tumors by enhancing the accumulation and prolonging the retention of the chemotherapeutics in the tumor site and inducing reactive oxygen species (ROS) generation and immunogenic cell death. Moreover, the nanoassemblies reinvigorate the immunocytes, especially the systemic immunocytes, and thereby alleviate pulmonary metastasis, even though the population of immunocytes in the primary tumor site is suppressed due to the enhanced accumulation of chemotherapeutics. This strategy provides a promising option for the intracellular immobilization of nanoparticles in vitro and in vivo.
Key words:    Nanoassembly    Glutathione response    Intracellular aggregation    Chemotherapy    Combinational immunotherapy   
Received: 2020-03-05     Revised: 2020-04-15
DOI: 10.1016/j.apsb.2020.06.013
Funds: This work was financially supported by the State Key Program of National Natural Science Foundation of China (31930067), the National Natural Science Fund for Distinguished Young Scholar (NSFC31525009, China), National Natural Science Funds (NSFC31771096, NSFC31871008, and NSFC31500809, China), the China Postdoctoral Science Foundation (2018M643484), 1$3$5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYGD18002, China), and the Post-Doctor Research Project, West China Hospital, Sichuan University (18HXBH038, China).
Corresponding author: Zhiyong Qian,,,
Author description:
PDF(KB) Free
Jinrong Peng
Yao Xiao
Qian Yang
Qingya Liu
Yu Chen
Kun Shi
Ying Hao
Ruxia Han
Zhiyong Qian

1. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology:the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014;66:2-25.
2. Li S, Zhang Y, Wang J, Zhao Y, Ji T, Zhao X, et al. Nanoparticlemediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours. Nat Biomed Eng 2017;1:667-79.
3. Wang Z, Ju Y, Ali Z, Yin H, Sheng F, Lin J, et al. Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. Nat Commun 2019;10:4418.
4. Huynh E, Leung BYC, Helfield BL, Shakiba M, Gandier J-A, Jin CS, et al. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol 2015;10:325-32.
5. Liu J, Ai X, Zhang H, Zhuo W, Mi P. Polymeric micelles with endosome escape and redox-responsive functions for enhanced intracellular drug delivery. J Biomed Nanotechnol 2019;15:373-81.
6. Liu R, Hu C, Yang Y, Zhang J, Gao H. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm Sin B 2019;9:410-20.
7. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 2010;7:653-64.
8. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016;1:16014.
9. Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater 2017;2:17024.
10. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 2019;575:299-309.
11. Yuan Y, Zhang J, Qi X, Li S, Liu G, Siddhanta S, et al. Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magneticresonanceimagingandtumourtherapy. Nat Mater 2019;18:1376-83.
12. Mi P, Cabral H, Kataoka K. Ligand-installed nanocarriers toward precision therapy. Adv Mater 2020;32:1902604.
13. Zhao Z, Ukidve A, Gao Y, Kim J, Mitragotri S. Erythrocyte leveraged chemotherapy (ELeCt):nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci Adv 2019;5:eaax9250.
14. Goldberg MS. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer 2019;19:587-602.
15. Yuan Y, Wang L, Du W, Ding Z, Zhang J, Han T, et al. Intracellular self-assembly of Taxol nanoparticles for overcoming multidrug resistance. Angew Chem Int Ed 2015;54:9700-4.
16. An HW, Li LL, Wang Y, Wang Z, Hou D, Lin YX, et al. A tumourselective cascade activatable self-detained system for drug delivery and cancer imaging. Nat Commun 2019;10:4861.
17. Zhan J, Cai Y, He S, Wang L, Yang Z. Tandem molecular selfassembly in liver cancer cells. Angew Chem Int Ed 2018;57:1813-6.
18. Li J, Shi K, Sabet ZF, Fu W, Zhou H, Xu S, et al. New power of selfassembling carbonic anhydrase inhibitor:short peptide-constructed nanofibers inspire hypoxic cancer therapy. Sci Adv 2019;5:eaax0937.
19. Ding Z, Sun H, Ge S, Cai Y, Yuan Y, Hai Z, et al. Furin-controlled Fe3O4 nanoparticle aggregation and 19F signal "turn-on" for precise MR imaging of tumors. Adv Funct Mater 2019;29:1903860.
20. Ruan S, Yuan M, Zhang L, Hu G, Chen J, Cun X, et al. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 2015;37:425-35.
21. Liu R, Yu M, Yang X, Umeshappa CS, Hu C, Yu W, et al. Linear chimeric triblock molecules self-assembled micelles with controllably transformable property to enhance tumor retention for chemo-photodynamic therapy of breast cancer. Adv Funct Mater 2019;29:1808462.
22. Peng J, Yang Q, Shi K, Xiao Y, Wei X, Qian Z. Intratumoral fate of functional nanoparticles in response to microenvironment factor:implications on cancer diagnosis and therapy. Adv Drug Deliv Rev 2019; 143:37-67.
23. Balendiran GK, Dabur R, Fraser D. The role of glutathione in cancer. Cell Biochem Funct 2004;22:343-52.
24. Liu T, Liu Z, Chen J, Jin R, Bai Y, Zhou Y, et al. Redox-responsive supramolecular micelles for targeted imaging and drug delivery to tumor. J Biomed Nanotechnol 2018;14:1107-16.
25. Li M, Zhao L, Zhang T, Shu Y, He Z, Ma Y, et al. Redox-sensitive prodrug nanoassemblies based on linoleic acid-modified docetaxel to resist breast cancers. Acta Pham Sin B 2019;9:421-32.
26. Wang Z, Wang N, Cheng S-C, Xu K, Deng Z, Chen S, et al. Phorbiplatin, a highly potent Pt(IV) antitumor prodrug that can be controllably activated by red light. Chem 2019;5:3151-65.
27. Xu Y, Han X, Li Y, Min H, Zhao X, Zhang Y, et al. Sulforaphane mediates glutathione depletion via polymeric nanoparticles to restore cisplatin chemosensitivity. ACS Nano 2019;13:13445-55.
28. Qian Q, Zhu L, Zhu X, Sun M, Yan D. Drug-polymer hybrid macromolecular engineering:degradable PEG integrated by platinum(IV) for cancer therapy. Matter 2019;1:1618-30.
29. XI Z, LIU Y. Molecular mechanisms of cisplatin resistance. Sci Sin Chim 2014;44:410-22.
30. Peng J, Yang Q, Xiao Y, Shi K, Liu Q, Hao Y, et al. Tumor microenvironment responsive drug-dye-peptide nanoassembly for enhanced tumor-targeting, penetration, and photo-chemo-immunotherapy. Adv Funct Mater 2019;29:1900004.
31. Ellis LT, Er HM, Hambley TW. The influence of the axial ligands of a series of platinum(IV) anti-cancer complexes on their reduction to platinum(II) and reaction with DNA. Aust J Chem 1995;48:793-806.
32. Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015;526:118-21.
33. Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A 2011;108:10980-5.
34. Yuan YY, Mao CQ, Du XJ, Du JZ, Wang F, Wang J. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv Mater 2012;24:5476-80.
35. Shamay Y, Shah J, Işk M, Mizrachi A, Leibold J, Tschaharganeh DF, et al. Quantitative self-assembly prediction yields targeted nanomedicines. Nat Mater 2018;17:361-8.
36. Peng J, Xiao Y, Li W, Yang Q, Tan L, Jia Y, et al. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Adv Sci 2018;5:1700891.
37. Huang X, Yin Y, Wu M, Zan W, Yang Q. LyP-1 peptide-functionalized gold nanoprisms for SERRS imaging and tumor growth suppressing by PTT induced-hyperthermia. Chin Chem Lett 2019;30:1335-40.
38. Chen C, Li Y, Yu X, Jiang Q, Xu X, Yang Q, et al. Bone-targeting melphalan prodrug with tumor-microenvironment sensitivity:Synthesis, in vitro and in vivo evaluation. Chin Chem Lett 2018;29:1609-12.
39. Green DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell death. Nat Rev Immunol 2009;9:353-63.
40. Chen L, Chen L, Qin Z, Lei J, Ye S, Zeng K, et al. Upregulation of miR-489-3p and miR-630 inhibits oxaliplatin uptake in renal cell carcinoma by targeting OCT2. Acta Pham Sin B 2019;9:1008-20.
41. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007;13:54-61.
42. Wan X, Min Y, Bludau H, Keith A, Sheiko SS, Jordan R, et al. Drug combination synergy in worm-like polymeric micelles improves treatment outcome for small cell and non-small cell lung cancer. ACS Nano 2018;12:2426-39.
43. Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally:immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215-33.
44. Peng J, Yang Q, Li W, Tan L, Xiao Y, Chen L, et al. Erythrocytemembrane-coated Prussian blue/manganese dioxide nanoparticles as H2O2-responsive oxygen generators to enhance cancer chemotherapy/photothermal therapy. ACS Appl Mater Interfaces 2017;9:44410-22.
45. Yang Q, Peng J, Xiao Y, Li W, Tan L, Xu X, et al. Porous Au@Pt nanoparticles:Therapeutic platform for tumor chemo-photothermal co-therapy and alleviating doxorubicin-induced oxidative damage. ACS Appl Mater Interfaces 2018;10:150-64.
46. Yang Q, Peng J, Shi K, Xiao Y, Liu Q, Han R, et al. Rationally designed peptide-conjugated gold/platinum nanosystem with active tumor-targeting for enhancing tumor photothermal-immunotherapy. J Control Release 2019;308:29-43.
Similar articles: