Reviews
Yesi Shi, Hongyan Qian, Peishi Rao, Dan Mu, Yuan Liu, Gang Liu, Zhongning Lin. Bioinspired membrane-based nanomodulators for immunotherapy of autoimmune and infectious diseases[J]. Acta Pharmaceutica Sinica B, 2022, 12(3): 1126-1147

Bioinspired membrane-based nanomodulators for immunotherapy of autoimmune and infectious diseases
Yesi Shia, Hongyan Qianb, Peishi Raob, Dan Mua, Yuan Liub, Gang Liua, Zhongning Lina
a. State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
b. Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen 361102, China
Abstract:
Autoimmune or infectious diseases often instigate the undesirable damages to tissues or organs to trigger immune-related diseases, which involve plenty of immune cells, pathogens and autoantibodies. Nanomedicine has a great potential in modulating immune system. Particularly, biomimetic nanomodulators can be designed for prevention, diagnosis and therapy to achieve a better targeted immunotherapy. With the development of materials science and bioengineering, a wide range of membrane-coated nanomodulators are available. Herein, we summarize recent advancements of bioinspired membrane-coated nanoplatform for systemic protection against immune-related diseases including autoimmune and infectious diseases. We also rethink the challenges or limitations in the progress of the therapeutic nanoplatform, and discuss the further application of the nanomodulators in the view of translational medicine for combating immune-related diseases.
Key words:    Biomimetic membrane    Nanomodulators    Immune system    Bioengineering    Immunotherapy    Autoimmune    Infectious diseases   
Received: 2021-05-12     Revised: 2021-07-29
DOI: 10.1016/j.apsb.2021.09.025
Funds: This work was supported by the Major State Basic Research Development Program of China (2017YFA0205201), the National Natural Science Foundation of China (81925019, 81901876, 81801817, 81603015 and U1705281), the Fundamental Research Funds for the Central Universities (20720190138, 20720190088 and 20720200019, China), Medical and Health Key project of Xiamen (3502Z20191106 and 2020Y4003, China), the Program for New Century Excellent Talents in University, China (NCET-13-0502) and China Postdoctoral Science Foundation Funded Project (K6419001, China).
Corresponding author: Yuan Liu,E-mai:liuyuan@xmu.edu.cn;Gang Liu,E-mai:gangliu.cmitm@xmu.edu.cn;Zhongning Lin,E-mai:linzhn@xmu.edu.cn     Email:liuyuan@xmu.edu.cn;gangliu.cmitm@xmu.edu.cn;linzhn@xmu.edu.cn
Author description:
Service
PDF(KB) Free
Print
0
Authors
Yesi Shi
Hongyan Qian
Peishi Rao
Dan Mu
Yuan Liu
Gang Liu
Zhongning Lin

References:
[1] Fugger L, Jensen LT, Rossjohn J. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell 2020;181:63-80
[2] Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, Ciuffreda M, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet 2020;395:1771-1778
[3] Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol 2021;19:23-36
[4] Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol 2017;17:219-232
[5] Carapetis JR, Beaton A, Cunningham MW, Guilherme L, Karthikeyan G, Mayosi BM, et al. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Primers 2016;2:15084
[6] Wang QH, Zhang YF, Wu LL, Niu S, Song CL, Zhang ZY, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020;181:894-904
[7] Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T Cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020;181:1489-1501
[8] Weiskopf D, Schmitz KS, Raadsen MP, Grifoni A, Okba NMA, Endeman H, et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol 2020;5:eabd2071
[9] Handel AE, Irani SR, Hollander GA. The role of thymic tolerance in CNS autoimmune disease. Nat Rev Neurol 2018;14:723-734
[10] Chen YH, Yu M, Zheng YW, Fu GP, Xin G, Zhu W, et al. CXCR5+PD-1+ follicular helper CD8 T cells control B cell tolerance. Nat Commun 2019;10:4415
[11] Jin K, Luo ZM, Zhang B, Pang ZQ. Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B 2018;8:23-33
[12] Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem 2015;84:577-601
[13] Buch MH. Defining refractory rheumatoid arthritis. Ann Rheum Dis 2018;77:966-969
[14] Zhang QZ, Dehaini D, Zhang Y, Zhou J, Chen XY, Zhang LF, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol 2018;13:1182-1190
[15] Li RX, He YW, Zhu Y, Jiang LX, Zhang SY, Qin J, et al. Route to rheumatoid arthritis by macrophage-derived microvesicle-coated nanoparticles. Nano Lett 2019;19:124-134
[16] Hirota K, Hashimoto M, Ito Y, Matsuura M, Ito H, Tanaka M, et al. Autoimmune Th17 cells induced synovial stromal and innate lymphoid cell secretion of the cytokine GM-CSF to initiate and augment autoimmune arthritis. Immunity 2018;48:1220-1232
[17] Lee JY, Hall JA, Kroehling L, Wu L, Najar T, Nguyen HH, et al. Serum amyloid proteins induce pathogenic Th17 cells and promote inflammatory disease. Cell 2020;180:79-91
[18] Nehar-Belaid D, Hong S, Marches R, Chen G, Bolisetty M, Baisch J, et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat Immunol 2020;21:1094-1106
[19] Liu LH, Wang PF, Nair MS, Yu J, Rapp M, Wang Q, et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 2020;584:450-456
[20] Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 2015;220:600-607
[21] Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A 2011;108:10980-10985
[22] Chen Z, Zhao PF, Luo ZY, Zheng MB, Tian H, Gong P, et al. Cancer cell membrane biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 2016;10:10049-10057
[23] Zou MZ, Liu WL, Gao F, Bai XF, Chen HS, Zeng X, et al. Artificial natural killer cells for specific tumor inhibition and renegade macrophage re-education. Adv Mater 2019;31:e1904495
[24] Lv P, Liu X, Chen XM, Liu C, Zhang Y, Chu CC, et al. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: a versatile platform for cancer virotherapy. Nano Lett 2019;19:2993-3001
[25] Zhang Y, Chen YJ, Lo C, Zhuang J, Angsantikul P, Zhang QZ, et al. Inhibition of pathogen adhesion by bacterial outer membrane-coated nanoparticles. Angew Chem Int Ed Engl 2019;58:11404-11408
[26] Cao ZP, Cheng SS, Wang XY, Pang Y, Liu JY. Camouflaging bacteria by wrapping with cell membranes. Nat Commun 2019;10:3452
[27] Li M, Li SY, Zhou H, Tang XF, Wu Y, Jiang W, et al. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat Commun 2020;11:1126
[28] Yong TY, Zhang XQ, Bie NN, Zhang HB, Zhang XT, Li FY, et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat Commun 2019;10:3838
[29] Ha D, Yang NN, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 2016;6:287-296
[30] Riazifar M, Mohammadi MR, Pone EJ, Yeri A, Lasser C, Segaliny AI, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano 2019;13:6670-6688
[31] Fang RH, Kroll AV, Gao WW, Zhang LF. Cell membrane coating nanotechnology. Adv Mater 2018;30:e1706759
[32] Yan HZ, Shao D, Lao YH, Li MQ, Hu HZ, Leong KW. Engineering cell membrane-based nanotherapeutics to target inflammation. Adv Sci 2019;6:1900605
[33] Wu HH, Jiang XC, Li YS, Zhou Y, Zhang TY, Zhi P, et al. Engineering stem cell derived biomimetic vesicles for versatility and effective targeted delivery. Adv Funct Mater 2020;30:2006169
[34] Zhang PF, Zhang L, Qin ZN, Hua SH, Guo ZD, Chu CC, et al. Genetically engineered liposome-like nanovesicles as active targeted transport platform. Adv Mater 2018;30:1705350
[35] Liu C, Guo JY, Tian F, Yang N, Yan FS, Ding YP, et al. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano 2017;11:6968-6976
[36] Liu C, Zhang W, Li YK, Chang JQ, Tian F, Zhao FH, et al. Microfluidic sonication to assemble exosome membrane-coated nanoparticles for immune evasion-mediated targeting. Nano Lett 2019;19:7836-7844
[37] Rao L, Cai B, Bu LL, Liao QQ, Guo SS, Zhao XZ, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 2017;11:3496-3505
[38] Xu J, Saklatvala R, Mittal S, Deshmukh S, Procopio A. Recent progress of potentiating immune checkpoint blockade with external stimuli-an industry perspective. Adv Sci 2020;7:1903394
[39] Kuerban K, Gao XW, Zhang H, Liu JY, Dong MX, Wu L, et al. Doxorubicin-loaded bacterial outer-membrane vesicles exert enhanced anti-tumor efficacy in non-small-cell lung cancer. Acta Pharm Sin B 2020;10:1534-1548
[40] Liu GN, Zhao X, Zhang YL, Xu JC, Xu JQ, Li Y, et al. Engineering biomimetic platesomes for pH-responsive drug delivery and enhanced antitumor activity. Adv Mater 2019;31:e1900795
[41] Zanella I, Konig E, Tomasi M, Gagliardi A, Frattini L, Fantappie L, et al. Proteome-minimized outer membrane vesicles from Escherichia coli as a generalized vaccine platform. J Extracell Vesicles 2021;10:e12066
[42] Shi Y, Xie F, Rao P, Qian H, Chen R, Chen H, et al. TRAIL-expressing cell membrane nanovesicles as an anti-inflammatory platform for rheumatoid arthritis therapy. J Control Release 2020;320:304-313
[43] Rosenblum MD, Gratz IK, Paw JS, Abbas AK. Treating human autoimmunity: current practice and future prospects. Sci Transl Med 2012;4:125sr1
[44] Miller SD, Turley DM, Podojil JR. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat Rev Immunol 2007;7:665-677
[45] Guo J, Zhang T, Cao H, Li X, Liang H, Liu M, et al. Sequencing of the MHC region defines HLA-DQA1 as the major genetic risk for seropositive rheumatoid arthritis in Han Chinese population. Ann Rheum Dis 2019;78:773-780
[46] Schrezenmeier E, Dorner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 2020;16:155-166
[47] Wright HL, Moots RJ, Edwards SW. The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol 2014;10:593-601
[48] Copp JA, Fang RH, Luk BT, Hu CM, Gao W, Zhang K, et al. Clearance of pathological antibodies using biomimetic nanoparticles. Proc Natl Acad Sci U S A 2014;111:13481-13486
[49] Wei XL, Gao J, Fang RH, Luk BT, Kroll AV, Dehaini D, et al. Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials 2016;111:116-123
[50] McClure M, Gopaluni S, Jayne D, Jones R. B cell therapy in ANCA-associated vasculitis: current and emerging treatment options. Nat Rev Rheumatol 2018;14:580-591
[51] Serra P, Santamaria P. Antigen-specific therapeutic approaches for autoimmunity. Nat Biotechnol 2019;37:238-251
[52] Knier B, Hiltensperger M, Sie C, Aly L, Lepennetier G, Engleitner T, et al. Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity. Nat Immunol 2018;19:1341-1351
[53] Barnas JL, Looney RJ, Anolik JH. B cell targeted therapies in autoimmune disease. Curr Opin Immunol 2019;61:92-99
[54] Dorner T, Posch MG, Li Y, Petricoul O, Cabanski M, Milojevic JM, et al. Treatment of primary Sjogren’s syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity. Ann Rheum Dis 2019;78:641-647
[55] Haacke EA, Bootsma H, Spijkervet FKL, Visser A, Vissink A, Kluin PM, et al. FcRL4+ B-cells in salivary glands of primary Sjogren's syndrome patients. J Autoimmun 2017;81:90-98
[56] Kadavath S, Bobic S, Efthimiou P. Use of B lymphocyte stimulator inhibitor belimumab may be associated with a decrease in the serum concentration of epidermal growth factor in patients with primary Sjogren's syndrome. Clin Rheumatol 2015;34:1651-1652
[57] Luk BT, Jiang Y, Copp JA, Hu CJ, Krishnan N, Gao W, et al. Biomimetic targeting of nanoparticles to immune cell subsets via cognate antigen interactions. Mol Pharm 2018;15:3723-3728
[58] Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol 2018;19:696-707
[59] Dong Y, Yong VW. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat Rev Neurol 2019;15:704-717
[60] Lodygin D, Hermann M, Schweingruber N, Flugel-Koch C, Watanabe T, Schlosser C, et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature 2019;566:503-508
[61] Li ZJ, Liu F, He X, Yang X, Shan FP, Feng J. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol 2019;67:268-280
[62] Casella G, Colombo F, Finardi A, Descamps H, Ill-Raga G, Spinelli A, et al. Extracellular vesicles containing IL-4 modulate neuroinflammation in a mouse model of multiple sclerosis. Mol Ther 2018;26:2107-2118
[63] Lundgren JD, Babiker AG, Gordin F, Emery S, Grund B, Sharma S, et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med 2015;373:795-807
[64] Yan RH, Zhang YY, Li YN, Xia L, Guo YY, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020;367:1444-1448
[65] Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020;581:221-224
[66] Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020;584:457-462
[67] Rao L, Xia S, Xu W, Tian R, Yu GC, Gu CJ, et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci U S A 2020;117:27141-27147
[68] Wei XL, Zhang G, Ran DN, Krishnan N, Fang RH, Gao W, et al. T-cell-mimicking nanoparticles can neutralize HIV infectivity. Adv Mater 2018;30:e1802233
[69] Barnett D, Walker B, Landay A, Denny TN. CD4 immunophenotyping in HIV infection. Nat Rev Microbiol 2008;6:S7-S15
[70] Doitsh G, Greene WC. Dissecting how CD4 T cells are lost during HIV infection. Cell Host Microbe 2016;19:280-291
[71] Bronshtein T, Toledano N, Danino D, Pollack S, Machluf M. Cell derived liposomes expressing CCR5 as a new targeted drug-delivery system for HIV infected cells. J Control Release 2011;151:139-148
[72] Nie CX, Parshad B, Bhatia S, Cheng C, Stadtmuller M, Oehrl A, et al. Topology matching design of an influenza-neutralizing spiky nanoparticle-based inhibitor with a dual mode of action. Angew Chem Int Ed Engl 2020;59:15532-15536
[73] Nie C, Stadtmuller M, Parshad B, Wallert M, Ahmadi V, Kerkhoff Y, et al. Heteromultivalent topology-matched nanostructures as potent and broad-spectrum influenza A virus inhibitors. Sci Adv 2021;7:eabd3803
[74] Quan L, Ji C, Ding X, Peng Y, Liu M, Sun J, et al. Cluster-transition determining sites underlying the antigenic evolution of seasonal influenza viruses. Mol Biol Evol 2019;36:1172-1186
[75] Chen HW, Fang ZS, Chen YT, Chen YI, Yao BY, Cheng JY, et al. Targeting and enrichment of viral pathogen by cell membrane cloaked magnetic nanoparticles for enhanced detection. ACS Appl Mater Interfaces 2017;9:39953-39961
[76] Katzelnick LC, Narvaez C, Arguello S, Lopez Mercado B, Collado D, Ampie O, et al. Zika virus infection enhances future risk of severe dengue disease. Science 2020;369:1123-1128
[77] Giraldo MI, Xia H, Aguilera-Aguirre L, Hage A, van Tol S, Shan C, et al. Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature 2020;585:414-419
[78] Rao L, Wang WB, Meng QF, Tian MF, Cai B, Wang YC, et al. A biomimetic nanodecoy traps Zika virus to prevent viral infection and fetal microcephaly development. Nano Lett 2019;19:2215-2222
[79] Shi Y, Zheng M. Hepatitis B virus persistence and reactivation. BMJ 2020;370:m2200
[80] Revill PA, Tu T, Netter HJ, Yuen LKW, Locarnini SA, Littlejohn M. The evolution and clinical impact of hepatitis B virus genome diversity. Nat Rev Gastroenterol Hepatol 2020;17:618-634
[81] Liu X, Yuan LZ, Zhang L, Mu YL, Li XL, Liu C, et al. Bioinspired artificial nanodecoys for Hepatitis B virus. Angew Chem Int Ed Engl 2018;57:12499-12503
[82] Wang C, Wang SB, Chen Y, Zhao JQ, Han SL, Zhao GM, et al. Membrane nanoparticles derived from ACE2-rich cells block SARS-CoV-2 infection. ACS Nano 2021;15:6340-6351
[83] Bonam SR, Kotla NG, Bohara RA, Rochev Y, Webster TJ, Bayry J. Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. Nano Today 2021;36:101051
[84] Zhang QZ, Honko A, Zhou JR, Gong H, Downs SN, Vasquez JH, et al. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett 2020;20:5570-5574
[85] Strickley JD, Messerschmidt JL, Awad ME, Li T, Hasegawa T, Ha DT, et al. Immunity to commensal papillomaviruses protects against skin cancer. Nature 2019;575:519-522
[86] Roden RBS, Stern PL. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat Rev Cancer 2018;18:240-254
[87] Zhang PF, Chen YX, Zeng Y, Shen CG, Li R, Guo ZD, et al. Virus-mimetic nanovesicles as a versatile antigen-delivery system. Proc Natl Acad Sci U S A 2015;112:E6129-E6138
[88] He YW, Li RX, Li HC, Zhang SY, Dai WT, Wu Q, et al. Erythroliposomes: integrated hybrid nanovesicles composed of erythrocyte membranes and artificial lipid membranes for pore-forming toxin clearance. ACS Nano 2019;13:4148-4159
[89] Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, et al. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 2018;67:574-587
[90] Chen YJ, Zhang Y, Chen MC, Zhuang J, Fang RH, Gao WW, et al. Biomimetic nanosponges suppress in vivo lethality induced by the whole secreted proteins of pathogenic bacteria. Small 2019;15:e1804994
[91] David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 2010;23:616-687
[92] Thamphiwatana S, Angsantikul P, Escajadillo T, Zhang Q, Olson J, Luk BT, et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc Natl Acad Sci U S A 2017;114:11488-11493
[93] Irene C, Fantappie L, Caproni E, Zerbini F, Anesi A, Tomasi M, et al. Bacterial outer membrane vesicles engineered with lipidated antigens as a platform for Staphylococcus aureus vaccine. Proc Natl Acad Sci U S A 2019;116:21780-21788
[94] Gao WW, Fang RH, Thamphiwatana S, Luk BT, Li JM, Angsantikul P, et al. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett 2015;15:1403-1409
[95] Wei XL, Ran DN, Campeau A, Xiao C, Zhou JR, Dehaini D, et al. Multiantigenic nanotoxoids for antivirulence vaccination against antibiotic-resistant gram-negative bacteria. Nano Lett 2019;19:4760-4769
[96] Hu CM, Fang RH, Luk BT, Zhang LF. Nanoparticle-detained toxins for safe and effective vaccination. Nat Nanotechnol 2013;8:933-938
[97] Pang X, Liu X, Cheng Y, Zhang C, Ren E, Liu C, et al. Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections. Adv Mater 2019;31:e1902530
[98] Surewaard BGJ, Thanabalasuriar A, Zeng Z, Tkaczyk C, Cohen TS, Bardoel BW, et al. α-Toxin induces platelet aggregation and liver injury during Staphylococcus aureus sepsis. Cell Host Microbe 2018;24:271-284.e3
[99] Claushuis TAM, de Vos AF, Nieswandt B, Boon L, Roelofs J, de Boer OJ, et al. Platelet glycoprotein VI aids in local immunity during pneumonia-derived sepsis caused by gram-negative bacteria. Blood 2018;131:864-876
[100] Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015;526:118-121
[101] Rao L, Yu GT, Meng QF, Bu LL, Tian R, Lin LS, et al. Cancer cell membrane-coated nanoparticles for personalized therapy in patient-derived xenograft models. Adv Funct Mater 2019;29:1905671
[102] Sun YX, Shi H, Yin SQ, Ji C, Zhang X, Zhang B, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano 2018;12:7613-7628
[103] Gao YF, Zhang H, Zhou NN, Xu PW, Wang JX, Gao Y, et al. Methotrexate-loaded tumour-cell-derived microvesicles can relieve biliary obstruction in patients with extrahepatic cholangiocarcinoma. Nat Biomed Eng 2020;4:743-753
[104] Zhao Y, Wang ZH, Jiang YN, Liu H, Song SL, Wang CY, et al. Biomimetic composite scaffolds to manipulate stem cells for aiding rheumatoid arthritis management. Adv Funct Mater 2019;29:1807860
[105] Song HY, Li XQ, Zhao ZC, Qian J, Wang Y, Cui J, et al. Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes. Nano Lett 2019;19:3040-3048
[106] Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 2015;117:52-64
[107] Hackstein H, Morelli AE, Thomson AW. Designer dendritic cells for tolerance induction: guided not misguided missiles. Trends Immunol 2001;22:437-442
[108] Fu YL, Zhan XX, Wang YC, Jiang XB, Liu M, Yang YL, et al. NLRC3 expression in dendritic cells attenuates CD4(+) T cell response and autoimmunity. Embo J 2019;38:e101397
[109] Zhang B, Wang Y, Yuan YS, Sun JQ, Liu LL, Huang D, et al. In vitro elimination of autoreactive B cells from rheumatoid arthritis patients by universal chimeric antigen receptor T cells. Ann Rheum Dis 2021;80:176-184
[110] Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ, et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 2016;353:179-184
Similar articles:
1.Zhongmin Tang, Yufen Xiao, Na Kong, Chuang Liu, Wei Chen, Xiangang Huang, Daiyun Xu, Jiang Ouyang, Chan Feng, Cong Wang, Junqing Wang, Han Zhang, Wei Tao.Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy[J]. Acta Pharmaceutica Sinica B, 2021,11(11): 3447-3464
Similar articles: